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Abstract

ABSTRACT

Prolonged time awake increases sleep drive and causes sleepiness. Increasing
sleep  drive  induces  rapid  and  uncontrolled  sleep  initiation  leading  to
unstable cognitive performance which is comparable to alcohol intoxication.
Sleepiness  causes  10  –  20  %  of  traffic  accidents  hence  being  a  major
identifiable and preventable cause of accidents. Even though the severeness
of sleepiness -related accidents and hazards have been recognized and the
state of New Jersey (USA) even has a law that forbids driving after being
awake for more than 24 h, there is no reliable on-site test for estimating total
time awake of a person.

A  reliable,  objective,  and  practical  metrics  for  measuring  sleepiness
outside  the  laboratory  would  be  valuable.  This  thesis  presents  a  novel
approach and examines whether an eye movement based metric could serve
as an on-site test metric for time awake.

The  rationale  for  the  studying  the  use  of  eye  movements  to  estimate
overall  time  awake  is  as  follows:  Different  cognitive  functions,  especially
attentional ones are vulnerable to sleepiness. The attentional and oculomotor
processes  share  neuroanatomical  networks  in  the  brain  and  saccadic  eye
movements  have  been  used  to  study  attentional  functions.  Moreover,
saccadic eye movements are sensitive to sleepiness.

The thesis consists of two parts: 1) Algorithm development for  electro-
oculographic  (EOG)  feature  extraction  to  enable  effective  and  practical
analyses  of  measurements  conducted  outside  the  laboratory,  and  2)
Development of an eye movement based metric to estimate prolonged time
awake.

Saccadic eye movements were measured from eleven healthy adults every
sixth hour with EOG in a 8-minute saccade task during 60 h of  prolonged
time  awake.  The  saccade  task  performance,  estimated  as  the  number  of
saccades, decreased as a function of time awake on an individual level. The
saccadic performance differed between the participants but was stable within
participants (tested with 5 participants). The circadian rhythm affected the
saccade  task  performance.  Thus,  the  three-process  model  of  alertness
(TPMA)  was  fitted  to,  and  the  circadian  component  (C-component)  was
removed from,  the  measured  data.  After  removing  the  C-component,  the
linear model revealed a significant trend for six out of eleven participants. 

The results imply  that saccades measured with EOG could be used as a
time  awake  metric  outside  the  laboratory.  The  metric  needs  individual
calibration  before  the  time  awake  of  a  person  can  be  estimated.  More
research is needed to study individual differences, optimize the measurement
duration, and stimulus parameters.
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Tiivistelmä 

TIIVISTELMÄ 

Pitkittynyt hereilläoloaika lisää unipainetta ja siten väsymystä. Kasvava unen tarve
aiheuttaa kontrolloimattomia torkahduksia, jotka heikentävät merkittävästi ihmisen
tarkkaavuutta ja siten kognitiivisia toimintoja. Univajeen aiheuttama epävakaa tila
on verrattavissa humalatilaan. Liikenneonnettomuuksista 10 – 20 % on väsymyksen
aiheuttamia.  Väsymys  on  näin  ollen  yksi  suurimmista  tunnetuista,  estettävissä
olevista onnettomuuksien syistä.

Väsymyksestä  johtuvien  onnettomuuksien  ja  katastrofien  vakavuus  on
tunnistettu; mm. New Jerseyssä (Yhdysvallat) on säädetty laki, joka kieltää ajamisen
yli  24  tunnin  hereilläoloajan  jälkeen.  Mittalaitetta,  jolla  kenttäolosuhteissa
pystytään  mittaamaan  luotettavasti,  objektiivisesti  ja  käytännöllisesti  kuljettajan
hereilläolon kokonaisaikaa ei kuitenkaan ole tällä hetkellä saatavilla. 

Tässä väitöskirjassa on kehitetty silmänliikkeisiin perustuva mittausmenetelmä,
jonka  avulla  voidaan  mitata  hereilläoloaikaa  laboratorion  kenttäolosuhteissa,
laboratorion  ulkopuolella.  Univajeessa  kognitiiviset  toiminnot  heikkenevät,
erityisesti  tarkkaavuus  sekä  visuaalinen,  silmänliikkeiden  avulla  tapahtuva
ympäristön  havainnointi.  Tarkkaavuutta  ja  okulomotorisia  toimintoja  säätelevät
osittain  samat  aivojen  otsalohkoalueiden  hermoverkot.  Tästä  syystä  sakkadisia
silmänliikkeitä voidaan käyttää sekä tarkkaavuuden että univajeen ja väsymyksen
tutkimiseen. 

Väitöskirja koostuu kahdesta osiosta: 1) Algoritmikehitystyöstä silmänliikkeiden
tunnistamiseksi  luotettavasti  kenttäolosuhteissa  silmänliikesignaalista,  2)
Silmänliikepohjaisen menetelmän kehittäminen hereilläoloajan estimointiin.

Sakkadisia  silmänliikkeitä  mitattiin  yhdeltätoista  terveeltä  aikuiselta  kuuden
tunnin  välein  60  tunnin  yhtäjaksoisen  univajeen  aikana.  Silmänliikkeet
rekisteröitiin  elektro-okulografia  (EOG)  -menetelmällä  8  minuuttia  kestävän
sakkaditestin aikana. Tehtävässä suoriutumista arvioitiin sen aikana suoritettujen
sakkadien  lukumäärällä.  Sakkadien  lukumäärä  laski  hereilläoloajan  funktiona
kaikilla tutkittavilla. Sakkaditehtävässä suoriutuminen vaihteli henkilöiden välillä.
Testin  toistettavuutta  tutkittiin  viidellä  henkilöllä  ja  se  todettiin  toistettavaksi.
Vuorokaudenaika  vaikutti  tehtävässä  suoriutumiseen  ja  tästä  syystä
vuorokausivaihteluun  liittyvä  sirkadiaaninen  rytmi  poistettiin  vireystilaa
mallintavan mallin avulla (three-process model of alertness, TPMA). Sirkadiaanisen
rytmin poistamisen jälkeen sakkadien lukumäärän lasku hereilläoloajan funktiona
oli lineaarinen kuudella tutkimushenkilöllä yhdestätoista.

Väitöskirjassa  esitettyjen  tulosten  perusteella  EOG-menetelmällä  mitattujen
silmänliikeiden avulla voidaan estimoida hereilläoloaikaa kenttäolosuhteissa. Tällä
hetkellä  mittaus  vaatii  henkilökohtaisen  kalibrointimittauksen  ennen  varsinaista
testimittausta.  Lisää  tutkimustyötä  tarvitaan  henkilöiden  yksilöllisten  erojen
tutkimiseen,  sekä  mittausasetelman  optimointiin  kenttäolosuhteisiin  laajemmin
sopivaksi.
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Introduction

1 INTRODUCTION

This  chapter  addresses  safety  risks  and  consequences  associated  with
sleepiness. It indicates the need for a reliable metric to quantify sleepiness.
Finally, the publications that form the basis for this thesis are summarized. 

Sleep is crucial for physical and mental health in humans [1–4]. During the
waking  hours  human  alertness  and  performance  is  influenced  by  both
homeostatic sleep pressure and endogenous oscillation called the circadian
rhythm [3, 5–7]. Prolonged time awake increases sleep pressure (the need to
sleep), and a person falls asleep when the sleep pressure exceeds a certain
threshold [7, 8]. In this thesis term time awake denotes the amount of time
that a person has been awake after waking up from sleep. Sleep reduces the
sleep  pressure;  the  longer  a  person  has  been  asleep  the  higher  is  the
likelihood of  waking up.  Sleepiness refers to instability  in the  sleep/wake
regulation  caused  by  e.g.  prolonged  time  awake,  cumulative  sleep
deprivation,  jet  lag  or  chronic  sleep  disorder  [3,  5].  Sleepiness  impairs
human  performance  and  increases  the  probability  of  human  errors  and
accidents e.g. [9–12]. 

Cognitive  functions,  especially  attentional  ones,  are  vulnerable  to
sleepiness  [13–21].  The  impact  of  17  h  of  sustained  wakefulness  is
comparable to that caused by a  blood alcohol concentration level (BAC)  of
0.5 ‰, which is the legal driving limit in Finland and many other countries
[14, 22]. Reaction times and accuracy in simple reaction time and tracking
tasks are significantly lower after 16  –  19 h of wakefulness than in a rested
state, which increases the likelihood of missing relevant information [14]. 

In  many  safety  critical  occupations  the  working  hours  are  long  and
irregular, and therefore these fields are especially vulnerable to accidents and
even  catastrophes  caused  by  sleepiness  e.g.  [23].  Sleepiness-related
performance decrement has been recognized in many safety critical sectors
e.g. in aviation  [24, 25], hospitals [26–29], railway, maritime [30], and road
traffic. Traffic kills more than one million people and 20 – 50 million people
are injured every year worldwide [31], and 10 – 20 % of the traffic accidents
are caused by sleepiness  [10, 30, 32–34]. Sleepiness is a major identifiable
and preventable cause of transport accidents [34]. 

At  the  moment,  in  most  countries,  there  are  no  criminal  laws  against
driving while sleep deprived [35]. The first step to criminalize driving while
sleep deprived was taken by the state of New Jersey, USA. “Maggie’s law”
forbids driving after being awake for more than 24 h [35]. However, the lack
of reliable metrics makes it complicated to criminalize driving under sleep
deprivation [35–37]. 

One can estimate BAC quickly on-site with a breathalyzer [38]. Similarly
a metric for objectively estimating the level of overall time awake would be
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Introduction

valuable. The development of sleepiness metrics is challenging, since there is
inter-individual variability in the response to sleep deprivation, sleep/wake
regulation,  and  sleepiness  parameters  (see  reviews  [20,  36]).  One  way  to
approach this problem is to find a parameter that reliably estimates how long
a person has been awake, or at least estimates whether the person has been
awake for longer than a predetermined threshold time (e.g. 24 h in “Maggie’s
law”). The threshold should be generalizable to everyone, and misuse should
be  avoided  by  employing  involuntary  biomarkers.  Moreover,  the  metrics
should be practical and easy to use on-site. The literature concerning such
metrics is limited. Currently  a  posturography based metric is the only one
that has shown promising and reliable results in laboratory settings e.g. [39–
43]. However, the method requires comprehensive field testing before large
scale use.

This  thesis  examines  whether  an  eye  movement  based  metric  could
provide  an  on-site  test  metrics  for  time  awake.  Eye  movements  and  eye
closures  are sensitive  to  sleepiness  e.g.  [44–52].  There  are  commercial
sleepiness monitoring and fit-for-duty solutions that measure eye parameters
e.g.  [53,  54].  Moreover,  the  attentional  and  oculomotor  processes  share
neuroanatomical networks in the brain [55, 56] and saccadic eye movements
have been used to study different attentional functions [18, 55, 57].

In  this  thesis,  saccadic  eye  movements  are  measured  with  electro-
oculography  (EOG),  which  is  a  widely  used  technique  that  measures  eye
movements.  It has been used in the clinical  setting e.g.  [58] and in sleep
deprivation  studies  both  inside  and  outside  the  laboratory  to  study  eye
closures, saccadic eye movements, and orienting attention e.g.  [44–48, 59–
61].

Based on previous findings, eye movements measured with EOG could
provide  an  applicable  and  reliable  metric  for  an  on-site  time  awake
estimator. Consequently, the purpose of this thesis is to examine 1) if the eye
movement based metric is sensitive for sleep pressure (time awake) at the
individual level, and 2) if the EOG measurements can be reliably performed
outside the laboratory.  

1.1 PUBLICATIONS AND AUTHOR CONTRIBUTION

Four publications form the basis for this thesis (Fig. 1). The thesis consists of
two parts: 1) Algorithm development for EOG feature extraction to permit
effective  and  practical  analyses  for  measurements  conducted  outside  the
laboratory (publications II,  IV),  and 2) Development of  an eye movement
based metric to estimate time awake (publications I, III).

12



Introduction

Fig.1.  Block diagram of the PhD thesis structure

Publication I 
Shows that the group mean of saccadic peak velocity (SPV) measured with
EOG outside the laboratory (Naval Academy, Bergen) every sixth hour during
60 h of time awake decreased during sleep deprivation. The eye movements
and  saccade  task  performance  were  analyzed  using  traditional  methods
(event by event analyses), which requires synchronizing the EOG signal and
saccade task stimulus sequence as well as calibrating the EOG signal relative
to eye movement. 

KH (K. Hirvonen) planned the eye movement measurement setup and
conducted  the  measurements,  made  the  statistical  analyses,  and  was
responsible for writing the manuscript.  

Publication II
Presents an auto-calibration algorithm for automatic analysis of EOG data.
The  algorithm  is  based  on  automatic  threshold  value  estimation.  The
amplitude threshold values for saccades and blinks were determined based
on features in the EOG recorded signal.  The presented algorithm extracts
EOG signal features without the need of calibration.

KP (K.  Pettersson,  née Hirvonen)  designed and conducted the  study,
assisted in algorithm designing, made the measurements, data analyses,
and was responsible for writing the manuscript.  

13



Introduction

Publication III
The auto-calibrating algorithm (publication II) was used to analyze the EOG
signal measured during 60 h of prolonged wakefulness (publication I). The
number of  saccades were analyzed with a new method that calculates the
number  of  horizontal  saccades.  The  number  of  saccades  decreased  as  a
function of time awake. There were inter-individual variability (N = 11), but
the results were stable (correlation coefficient between 0.62 and 0.96, mean
0.79) within participants (N = 5). The saccade task performance was affected
by the circadian rhythm and was removed from the eye movement data by
using  the  three-process  model  of  alertness  (TPMA).  After  removing  the
circadian component the monotonous relation between performance in the
saccade task and time awake was clearly seen. Results implies that saccades
measured  with  EOG  can  be  used  as  a  time  awake  metric  outside  the
laboratory.

KP planned the eye movement measurement setup and conducted the
measurements, made the analyses, and was responsible for writing the
manuscript.

Publication IV 
Presents a computationally light algorithm that automatically detects blinks,
saccades, and fixations in EOG data. 

KP gave  guidance  on  EOG  signal  processing  and  eye  movements,
assisted on study design, and writing work.  

14



Sleep deprivation and performance

2 SLEEP DEPRIVATION AND 

PERFORMANCE

This  chapter  reviews  sleep-wake  regulation,  basic  attentional  functions,
and effects of acute sleep deprivation on basic attentional functions.

The  sleep  need  per  night  varies  between  individuals.  Cappuccio  and
colleagues  suggested  in  their  systematic  review  and  meta-analysis  that
normal sleep need is between 7 and 9 hours per night [62]. Sleep deprivation
is an outcome of not getting enough sleep. The condition can be a result of
acute  and/or  chronic  partial  (cumulative)  sleep  deprivation.  Acute  sleep
deprivation is either short-term (≤ 45 h of continuous wakefulness without
sleep), long-term (> 45 h of continuous wakefulness without sleep) or partial
(< 7/24  h  of  sleep)  [11].  Sleep deprivation is  chronic  when daily  sleep is
reduced across many days (> 5 d) [4].  

Sleep  deprivation  has  serious  physiological  consequences  and
significantly  impairs  human  performance  e.g.  [1–4,  20].  Acute  sleep
deprivation  can  affect  the  speed,  accuracy,  and  variability  of  human
performance.  It  reduces  the  ability  to  do  self-evaluation  and  impairs
emotional ability [2, 11, 14, 17, 63]. Long term sleep deprivation has severe
health  consequences:  increasing  the  risk  of  diabetes,  obesity,  depression,
heart attack, and stroke e.g. [1, 3, 4, 64]. 

2.1 SLEEP-WAKE REGULATION 

The ascending arousal system of the brain (Fig. 2) maintains wakefulness [3,
6, 65]. During wakefulness the thalamus acts as a gatekeeper by channeling
ascending  arousal  signals  from  the  brainstem  (from  hypothalamus  and
somatic sensory impulses) to the cerebral cortex [3, 6, 65]. The master clock
of  the  brain  is  located  at  the  suprachiasmatic  nuclei  (SCN)  of  the
hypothalamus.  The optic  nerve  provides  information to  the  SCN on daily
light  level  sensed  by  light  sensitive  retinal  ganglion  cells  and  the  SCN
synchronizes the circadian clock to the environmental light-dark cycle [3, 5,
11, 65]. The master clock further synchronizes the cell level clock genes with
external light-dark cycle and with each other [3, 5, 66, 67]. It also modulates
both sleep and wakefulness, acting as a sleep-wake switch [11, 68]. 

During the waking hours human performance and alertness is influenced
by both the homeostatic sleep drive that builds during wakefulness (sleep
pressure) and the endogenous oscillation with a ca 24 h period, called the
circadian rhythm [6, 7].

15



Sleep deprivation and performance

Mathematical models based on alertness have been developed to describe the
sleep-wake cycle. The most popular models are the two-process [7, 69] and
the three-process model of alertness (TPMA) [8]. Differences between these
models  are  small,  since  they share  a  common basis  [70].  The TPMA was
developed to model neurobehavioral  function and it  is  widely used in the
sleep deprivation studies [69]. 

 

Fig. 2. Schematic figure of the human ascending reticular activation system (modified from [18, 
65, 71]). 

2.1.1 THREE-PROCESS MODEL OF ALERTNESS (TPMA)

The model  has  three  components;  a  circadian  process  (C),  a  homeostatic
process that starts when person wakes up from sleep i.e. at awakening (S),
and  sleep  inertia  (W)  [8].  The  C-process  represents  alertness  due  to  the
circadian  influence  and has  a  sinusoidal-like  form (Equation  1.1).  The  S-
process is an exponential function that represents time passed since wake up
(homeostasis) (Equation 1.2). The S-process is high at wake up and decreases
rapidly until it reaches a low asymptote and sleep begins. At sleep onset the
S-process  is  called  S’  and  is  reversed,  the  sleep  recovers  alertness  and
performance exponentially until the upper asymptote is reached (Equation
1.3). Sleep inertia, the W-process decreases alertness and performance right
after the awakening. 

In this thesis acute sleep deprivation is addressed, therefore only the C
and S components are used to model alertness and performance during time
awake. The estimated alertness/performance (P) is the sum of the C and S
processes (Equation 1.4., Fig. 3).
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(1.1) C=Mcos((t 1 − p) π
12

)

Here,  C  =  circadian  component,  M = amplitude  of  the  circadian,  p  =
upper acrophase2 (decimal hours), t1 = time of the day (decimal hours).

(1.2)  S=(Sa− L)e−0.0353 t2+L

where, S = homeostasis component (awake), Sa = value of S at wake up,
L=lower  asymptote3 (decimal  hours),  t2  =  time  since  awakening  (decimal
hours)

(1.3) S ' =U−(U −Sr)e−0.381 t3

where, S’ = homeostatic component (sleep), Sr = value of S at retiring, U =
upper asymptote4 (decimal hours),   t3 = time since falling asleep  (decimal
hours).

The estimated alertness/performance (P) is the sum of the C and S processes:
 

(1.4) P=C +S=Mcos((t 1− p) π
12

)+(Sa −L)e−0.0353 t2+L

Fig. 3. Schematic figure of two components, C and S, of the three-process model (modified from
[8]). The model comprises three components C, S, and W. Here, the C and S processes are
presented. The sinusoidal C-process (gray dashed line) represents sleepiness due to circadian
influence (wake-up at 07 am). The exponential S-process (gray solid line) represents time lapsed
since awakening (homeostasis). The estimated performance/alertness (P) is the sum of the S
and C processes (black line). 

2 time when the circadian rhythm reaches its peak value

3 lowest value that the exponential function reaches

4 highest value that the exponential function reaches
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2.2 ATTENTION

Attention is the focusing state of consciousness and performance resources to
meet  demands  in  changing everyday  situations.  Attention has  three  main
functions  1)  to  maintain  alertness  (alerting  subsystem),  2)  to  orient  to
sensory inputs by selecting modality and/or location (orienting subsystem),
and 3) to detect signals for conscious processing, monitoring, and conflict
resolution (executive subsystem5) [16, 18]. The alerting system, i.e. sustained
attention, manages ongoing goal-directed behavior and thus determines the
efficiency  of  the  other  aspects  of  attention  (orienting  and  executive)  and
general  performance  [18,  72,  73].  The  ability  to  sustain  attention  and
maintain engagement in a specific task over time is crucial for survival. The
alerting subsystems catch input from the surrounding environment; you hear
a noise and turn to see what causes it. The orienting subsystem places the
alert  in  context;  you look  around to  find the  noise  source.  The executive
subsystem makes higher level cognitive decisions after the noise source has
been detected and recognized,  such as conflict  resolution and planning of
next actions etc. 

The alerting system of attention is vulnerable to sleep deprivation and the
orienting  system  is  closely  linked  to  eye  movements,  therefore  these
attentional functions are relevant for this thesis and reviewed more closely.
Moreover, the orienting subsystem is affected by sleep deprivation through
the alerting system, therefore the mechanism behind how sleep deprivation
affects the alerting system is reviewed in this chapter. The impact of sleep
deprivation on the orienting subsystem and on eye movements is presented
in Chapter 4: “Quantifying sleepiness”.

2.2.1 ALERTING SUBSYSTEM OF ATTENTION

Alertness and sustained attention to the surroundings create a base for other
attentional functions and cognitive capacity in general, by maintaining the
state  of  high sensitivity  and vigilance to  incoming stimuli  [18,  72].  These
functions rely on multiple underlying brain processes: an important one is
the  sleep–wake  state,  which  depends  on  the  brainstem-thalamo-cortical
pathways, see Fig. 2. [71, 73]. Sustained attention is also vulnerable to sleep
deprivation [13, 15, 16, 18, 63]. An increasing sleep drive induces a rapid and
uncontrolled sleep initiation (microsleep) e.g. [16, 63]. Microsleep occasions
cause lapses in alertness that present as errors of omission and commission,
leading to weakened and unstable cognitive performance e.g. [2, 16, 63, 68].
Such varying performance has been hypothesized to present as wake-state
instability [16, 63]. 

In neuroimaging studies using positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI) methods thalamic activation

5 former detecting subsystem 
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level has been linked to attentional lapses in sleep deprivated participants.
Attentional performance is maintained when the thalamic activity is elevated,
but when the activation is considerably decreased, lapses in attention become
common [2, 74, 75]. 

2.2.2 ORIENTING SUBSYSTEM OF ATTENTION 

The orienting subsystem aligns attention with sensory input. The aligning
can involve  eye  movements  (overt)  but  can also  be  executed  without  eye
movements  (covert)  e.g.  [55,  71]  Attention  shifts  can  be  reflexive
(exogenous/bottom-up) or strategic (endogenous/top-down). The posterior
brain areas (intraparietal sulcus (IPS) and temporoparietal junction (TPJ))
and  the  frontal  areas  (frontal  eye  fields  (FEF)  and  ventral  frontal  cortex
(VFC)) are employed by the orienting system for visual events (Fig. 4) [55,
56, 71]. The reflexive attentional system is lateralized to the right hemisphere
and  centered  on  TPJ  and  VFC.  The  endogenous  attentional  system  is
centered  on  the  dorsal  posterior  parietal  and  frontal  cortex  [55,  76].
However, according to the premotor theory of attention the mechanism for
directing attention to a location is similar to the mechanism for preparing an
eye movement [77]. Neuroimaging studies using PET and fMRI have shown a
strong overlap between activation of FEF and IPS during covert and overt
shifts [55,  76]. Areas in IPS and FEF are functionally connected and they
have  been  suggested  to  maintain  spatial  priority  maps  for  covert  spatial
attention, eye movement planning, and visual working memory [56, 76, 78].

Humans scan the visual scene with rapid, steplike eye movements called
saccades. The information thus gathered contributes to how the environment
is perceived by the viewer. The saccade command is coordinated by FEF and
superior  colliculus  (SC)  (Fig.  4). The  saccade  command  is  supposed  to
originate in the SC where it gets to FEF through the thalamus. The visual
information is processed in the visual cortex, IPS, and FEF and these areas
compute the spatial location of the upcoming saccade. The FEF forwards the
saccade command via SC to oculomotor nuclei that  controls each of the six
eye muscles [56, 79].
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Fig. 4. Schematic figure of the orienting subsystem of attention (modified from [18, 71, 76]). Areas
involved in saccade generation are marked with yellow and orange, the endogenous attention
system with orange, and the exogenous system with green. IPS = intraparietal sulcus; TPJ =
temporoparietal junction; FEF = frontal eye fields; VFC = ventral frontal cortex; SC = superior
colliculus. 
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3 EYE MOVEMENTS  

This chapter presents the properties of eye blinks, saccadic eye movements,
and the saccade tasks (e.g. for studying orienting attention). Finally, the
basics of the  EOG method is presented with focus on measuring a person
who is awake. 

Humans  scan  the  environment  with  rapid  saccadic  eye  movements.
Information  is  gathered  during  eye  fixations,  in  foveal  vision  between
saccades. The area of highest acuity at the fovea is small (2 degrees of visual
angle6) and therefore stabilizing eye movements hold the eye quite steady
during  the  fixation.  The  vestibulo-ocular  reflex  stabilizes  the  eye  fixation
when the head is moving, while optokinetic, smooth pursuit, and vergence
movements  stabilize  fixations  on  a  moving  target  [80,  81]  These  eye
movements permit scanning of the environment while e.g. walking, running,
and  riding  in  a  moving  vehicle.  Tremor,  drift,  and  microsaccades  are
miniature eye movements, which reduce neural adaptation during fixation
and therefore prevent fading of the visual image e.g. [80, 81].

Even though attention and eye movements are closely linked (Chapter 2)
they can act independently. Attention is not necessarily located at the point
we  look  at,  since  information  from  the  surroundings  is  gathered  via  the
parafoveal vision (ca. 10° area around the fovea) and peripheral vision (ca.
90° area around the fovea) as well. The next fixation point is selected during
the  ongoing  fixation,  the  selection  is  either  reflexive  (overt  attention)  or
voluntary (covert attention). Additionally, the reflexive selection of the new
fixation point is quick and made without attention while voluntary fixation
selection needs more time e.g. [82]. 

Eyes  are  moving  even  during  sleep.  The  first  signs  of  sleep  onset  are
sinusoidal eye movements called slow eye movements (SEM) [83]. Saccades
i.e. rapid eye movements (REM) are present in the sleep stage where dreams
are seen [80].

Frequent rapid closures and re-openings of the eyelid take place during
wakefulness. Even though blinks are not actually eye movements, they need
to be taken into account in eye movement measurements. Importantly, blink
parameters have shown sensitivity to sleep deprivation e.g. [53].

Eye movements and eye blinks can be measured with several techniques.
The most used ones both in the field and an in laboratory settings are EOG,
video-oculography (VOG), and infrared-oculography (IROG). However, EOG
is  the  only  eye  movement  measurement  technique  that  detects  eye
movements  when  the  eyes  are  closed.  Therefore,  it  is  generally  used  to
determine  sleep  onset  together  with  electroencephalography  (EEG)  in
standardized clinical measurements [83] and in sleep research  e.g. [58, 84].

6 From here on ° refers to degrees of visual angle
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3.1 SACCADIC EYE MOVEMENTS

Saccades are fast eye movements between fixations. During a saccade both
eyes have the same amplitude and direction i.e. the eyes moves conjunctively.
Saccades occur frequently, three to five times per second, more than 100 000
times per day [85], during normal viewing. The eyeball is relatively light and
mobile, and therefore the metabolic cost of frequent and fast movements is
low  [81].  These  fast  and  frequent  eye  movements  permit  efficient  and
thorough scanning of the surrounding world.

The  orienting  attention  captures  the  next  fixation  location  during  the
ongoing fixation. The next saccade is programmed in the brain as presented
in Chapter 2.3.2. The time between the stimulus (i.e. the phenomenon that
captures our attention) and the saccade execution is called saccadic latency
(Fig. 5). After saccade execution, the eye accelerates to its peak velocity, after
which  the  movement  decelerates  until  the  movement  stops  and  the  eye
fixates again.

The saccade amplitude varies, since it is defined by the next target. The
amplitude  determines  the  saccade  accuracy.  The  accuracy  is  defined  by
calculating the saccade gain by dividing the saccade amplitude with the target
amplitude. Gains below one indicate that the saccades have been too small
and undershoot the target (hypometria) whereas the gains larger than one
indicate that the saccades have overshooted the target location (hypermetria)
[80]. 

An adult can make saccades large as 40° [81]. However, during normal
viewing most saccades are smaller than 15°, otherwise a combined movement
of the eye and head occurs [81, 86]. The saccade direction can be horizontal,
vertical, and oblique. Vertical saccades are slower than horizontal saccades.
An oblique saccade can be faster than either a purely horizontal or a vertical
saccade of the same amplitude [87]. 

3.1.1 PEAK VELOCITY AND VELOCITY PROFILE 

Across  individuals  saccades  have  a  characteristic  temporal  and  velocity
profile (Fig. 5) [80, 88, 89]. The duration and velocity of the saccades are not
under voluntary control [80]. The burst neurons in the oculomotor nuclei
control the eye movement muscles, and thus determine the velocity profile of
the saccade.  The acceleration phase of the eye lasts as  long as the neural
signal pulse, the peak velocity of the saccade is reached at the point of the
maximum firing rate of the burst neurons [80, 90].

The duration and the peak velocity of the saccades depend on the saccade
amplitude. This relation is called “main sequence”7 [91]. The main sequence
relation  between  saccade  duration  and  amplitude  is  linear  for  saccades

7 The term is analogous to the “main sequence” in astronomy; relationship between stellar color

versus brightness of dwarf stars
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between 6° and 90° amplitude, whereas the relation between amplitude and
peak  velocity  is  saturated  for  larger  than  20°  saccades  [80,  92].  An
exponential equation has been used to describe the main sequence between
amplitude and peak velocity (see Appendix I). 

Fig.  5.  Schematic  figure  of  a  horizontal  saccadic  eye movement.  The eye movement  signal
(measured with EOG) is marked with blue, the eye velocity signal (black) is a first order time
derivative of the eye movement signal. The red line (left) presents the stimulus. Saccade latency
is the time between the stimulus onset and the start of the saccadic eye movement. A = saccade
amplitude, D = saccade duration (gray area), T1 = acceleration time of the eye, T2 = deceleration
time of the eye, SPV = saccade peak velocity.

The saturation of  the  peak velocity  of  the  large  saccades leads to  skewed
velocity  profile  since  the  deceleration  time (T2 in  Fig  3.1.)  is  longer  than
acceleration time (T1 in Fig 3.1.).  The skewness ratio (ratio of acceleration
time and saccade duration) is 0.5 for < 10° saccades, and decreases for larger
saccades, e.g. for 60° saccades the ratio is 0.2 [80, 88, 92].

3.2 SACCADE TASKS

Saccade tasks have been used to study overt and covert attentional shifts,
oculomotor control, brain functions, as well as development and dysfunction
in  neurological  and  psychiatric  disorders  [80,  93].  The  basic  idea  of  the
prosaccade task is simple; when a visual stimulus jumps from one location to
another  one,  the  participant  makes  a  reflexive  saccade  to  the  new target
location  in  ca.  200 ms  [80].  The  fixed  timing  and target  location  in  the
prosaccade  task  permits  comparing  oculomotor  parameters  (e.g.  peak
velocity, latencies) in different physiological conditions e.g. sleep deprivation.

The voluntary control of the reflexive saccade and covert attention have
been studied  using antisaccade  tasks  e.g.  [94].  In  this  task  the  person  is
required to suppress a reflexive saccade towards visual stimuli and is asked
to  generate  a  voluntary  saccade  of  equal  size  towards  the  opposite  side
(antisaccade).  The  antisaccade  task  is  challenging;  after  training,  normal
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participants fail to suppress the voluntary saccade in 5 – 15 % of antisaccade
trials [80,  95, 96]. Furthermore,  antisaccades have longer latencies, lower
peak velocities,  and a skewed velocity profile  compared to visually  guided
prosaccades  e.g.  [80].  The  differences  between pro-  and  antisaccade  task
performance (errors,  latencies)  are  referred  as  “antisaccade  cost”  and  are
used to measure overt vs. covert attentional shift [82, 97–99].

The saccadic voluntary control and fixational system has been studied by
altering the timing between current fixation point and the target stimulus
(gap and overlap paradigms) [80]. The gap (ca. 200 ms) between the fixation
point and target stimulus decreases the saccadic latencies to ca 100ms [100–
102]. When the fixation point disappears, the pre-visual activity increases in
the motor neurons (at the SC), and when the target stimulus appears, the
saccade is made without any higher order decision about the stimuli or type
of the response [103]. Thus, the overlap between the fixation point and target
stimulus  increases  the  latency  to  220  ms  [102].  The  gap  and  overlap
paradigms are presented in Fig. 6. The difference between the latencies in
these two paradigms is called gap effect and is explained by the attentional
disengagement process [104].  Moreover,  an increased gap effect  has been
suggested to reflect impairment of attentional disengagement [104].

Normal  participants  seldom  make  errors  in  the  overlap  task,  while  a
fraction  of  reactions  in  the  gap  task  are  classified  as  anticipatory  errors
(saccades with latencies between 10  –  79 ms). These anticipatory saccades
tend to overshoot by more than 20 % from the target location and therefore
are corrected with a corrective saccade immediately (with an inter-saccade-
interval of 0 – 100 ms) [100, 101].

Fig. 6. Example of a saccade task with gap and overlap paradigms. In the overlap paradigm (left)
the central fixation point is visible all the time whereas in the gap paradigm (right) the central
fixation point disappears 200ms before the stimulus.
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3.3 EYE BLINKS

This chapter presents the properties of the spontaneous eye blink, with focus
on the waveform of the blink. The origin of the blink and the aspects affecting
the blink parameters are outside of the focus of this thesis.

A human blinks 3 – 20 times per minute [80, 105]. The blink rate varies
between individuals but the intra-individual variation is small in a specific
setting [105]. The visual and cognitive demand of the task affects the blink
rate e.g. the blink rate is lower during reading than in rest  [106].

The peak velocity of the lid closure and eye opening is a linear function of
blink amplitude size from ca.  1 to 60° [107]. The closing peak velocities are
more than twice larger than the opening velocities. A spontaneous blink lasts
250 – 1000 ms [108]. The closing phase of the eye lasts < 150 ms (see Fig. 7),
while the re-opening phase lasts > 150 ms [108]. 

Fig. 7. Schematic figure of an eye blink. The eyelid movement signal (measured with EOG) is
marked red, the eyelid velocity signal (black) is a first time derivative of the lid movement signal.
A = blink amplitude, blink duration is marked with a gray area, T1  = the closing time of the eye,
T2 = the opening time of the eye.

3.4 ELECTRO-OCULOGRAHPY (EOG)

EOG is a simple method for measuring eye movements. EOG has been widely
used in different settings; clinical oculomotor measurements e.g. [58, 80], in
both field and laboratory studies e.g. [109] and in sleep deprivation studies
e.g. [44–47, 60, 110–112].

The EOG measurement relies on electrical features of the human eye. The
corneo-retinal potential, 0.4 – 1.0 mV, is present between the front (cornea)
and back (retina) of the eye e.g. [58]. The negative charge at the retina is due
to its higher metabolic rate compared to that of the cornea e.g.  [58, 113].
When  the  eye  moves,  the  dipole  rotates  which  causes  a  small  difference
between the electrical potential at the electrodes attached to the skin around
the eyes (see Fig. 8) [114]. If the eyes move to the right the surface potential
increases at the right eye canthi (Fig. 8. electrode EOGR) and decreases the
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surface potential at the left eye canthi (Fig. 8. electrode EOGL). The potential
differences can be measured using a differential amplifier. The vertical eye
movement signal, EOGv is the difference between the voltage recorded by the
upper and lower eye electrode, whereas the horizontal eye movement signal,
EOGh is the difference between the voltage recorded by the right and left eye
electrodes8.  The  saccades  are  visible  in  both  the  vertical  and  horizontal
signals whereas blinks are large peaks in the vertical EOG signal only (see
Figs. 7, 8, and 9).  

Fig. 8. The EOG is measured with four electrodes from the outer canthi of both eyes, and from
above and below of the right eye9. The vertical eye movement signal (red), EOGv is the difference
between the voltage recorded by the upper and lower eye electrode (EOGv  = EOGU  -  EOGD)
whereas the horizontal eye movement signal (blue), EOGh is the difference between the voltage
recorded by the right and left eye electrodes (EOGh = EOGR - EOGL).

The magnitude of the corneo-retinal amplitude, a function of the amount of
ambient light, affects the EOG signal amplitude10. The amplitude changes can
reach 50 % e.g.  [58].  Therefore ca. 10 min of  light adaptation before any
measurement is necessary, if the illumination level has changed before the
measurements e.g. [58, 113]. A headrest is usually used to prevent interfering
eye movements that compensate for head movements. Calibration between
EOG and eye movements (mV to visual angle degree) is needed before each
measurement.

The temporal resolution of EOG depends on the sampling frequency of
the  signal  amplifier. A  sampling  rate  exceeding  200  Hz  enables  reliable

8 This “cyclopean eye” electrode configuration is commonly used for measuring an awake person

[58]. For sleep electrode configuration see “The American Academy of Sleep Medicine Manual for the

scoring of sleep and associated events” [83], and for clinical oculomor measurements [58].

9 In this thesis the vertical EOG (EOGv) was measured from the left eye. However, the electrodes

can be attached above and below the right eye as well. 

10 Phenomena arise from ion permeability changes across the retina. In the dark the metabolic

activity at the retina is slow which reduces the negative charge of the retina. This reduces the corneal-

retinal potential and the EOG signal amplitude e.g. [115]. 
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latency, duration, and velocity analyses of the saccades. However, the spatial
resolution of the EOG is poor, since eyelid movements and muscle activity
induce major artifacts into the vertical EOG signal [58, 116].

Both slow baseline drift and high frequency artifacts influence the EOG
signal (Fig. 9). The baseline drift is caused by changes in contact impedance
due  to  e.g.  sweating  [58].  High  frequency  noise  is  picked  up  from  e.g.
powerlines, muscle activity, and participant movement [58]. Denoising the
EOG signal  is  challenging since eye movements are usually  non-repetitive
which  makes  the  EOG  signal  unpredictable.  Consequently,  methods  that
need structural and temporal knowledge about the expected signal cannot be
used. Additionally, reliable eye movement classification and further analyses
require undistorted edges (e.g. step-like saccades), amplitude, and durations
of  the  eye movements  signal.  Baseline  drift  has  been removed from EOG
signals by high-pass filters e.g. [58, 117] and wavelet filters [109] whereas
low-pass [118] and median filters [109, 118, 119] have been used to remove
high  frequency  noise.  Unfortunately,  digital  filtering  distorts  the  saccade
parameters by distorting the edges and by increasing saccade duration and
lowering velocity estimates [118–120].

Fig. 9. Example of the EOG signal denoising. A) Raw EOG signals (EOGv is red and EOGh is blue) and
B) EOG signals without baseline drift. C) Denoised EOG signals, the gray signal represents the EOG
signal  before  the  high-frequency  denoising.  D)  Saccades  and  blinks  are  marked  gray.  Oblique
saccades  on  the  left  causes  a  step  like  jump  to  both  EOGv and  EOGh signals  while  horizontal
saccades are visible on only in the EOGh signal. The blink is a large signal jump (right) in the EOGv

signal.
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4 QUANTIFYING SLEEPINESS

This chapter reviews sleepiness metrics, with a focus on ocular parameters
and attentional functions as well as on potential time awake metrics.

Sleepiness  biomarkers  are  extracted  by  objective  and subjective  methods.
Subjective methods include both simple questions about current sleepiness
state and large questionnaires that estimate possible pathologies behind the
sleepiness. 

A popular and simple questionnaire is Karolinska Sleepiness Scale (KSS)
[121]; a nine-point scale from 1, “very alert,” to 9, “very sleepy, great effort to
stay awake or fighting sleep.” The KSS estimates the psycho-physical state
experienced in the last 10 minutes [121]. KSS scores increase with prolonged
wakefulness [121] and correlate with sleep deprivation [122]. KSS has been
used in studies of shift-work, driving ability, on-duty alertness, attention, and
cognitive performance e.g.  [24, 123–125].  Even though simply asking about
the person’s alertness level would be easy do on-site, this would rely on self-
reporting which is vulnerable to environmental and motivational issues: The
ability  to  estimate  internal  states,  tendency  to  minimize  or  magnify  the
feelings, and any underlying agenda [126, 127] Moreover, sleep deprivation
itself influences an individual's ability to estimate his/her own performance
[128, 129].

Objective  measures  are  divided  into  behavioral  performance  and
physiology-based methods. Behavioral methods aim to measure sleepiness
indirectly  via  performance  decrement  in  a  specific  task  that  requires  e.g.
attention,  memory,  and/or  motor  function  [126,  127,  130].  Behavioral
methods  are  vulnerable  to  external  and  motivational  factors  [126].
Physiological  methods  include  monitoring  spontaneous  fluctuations  in
physiological  parameters,  biological  markers,  and  clinical  methods  for
measuring sleep propensity or sleep pressure [126, 127].

The gold standard for quantifying sleepiness, the Multiple Sleep Latency
Test  (MSLT),  measures  sleep  latency.  How  fast  a  person  falls  asleep
estimates the intensity of the current sleep pressure. The test is widely used
in clinical and laboratory settings [126, 130]. In MSLT a person is asked to
rest (lie on the bed) (20 – 30 min) in a darkened room and is encouraged to
fall asleep. The test is repeated several times per day. Sleep onset is assessed
with EEG and EOG recordings [126, 127]. Sleep latency may be the optimal
parameter  for  measuring sleepiness  in  isolation from real-world  demands
and laboratory settings, but not in the field.

Arousal  decrement  measures  can be  used to  measure  sleepiness  of  an
awake,  actively  operating  person  [126].  They  are  based  on  monitoring
spontaneous  variation  in  physiology:  Brain  activity  parameters  (e.g.  EEG
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patterns,  spectral  parameters),  ocular parameters (e.g.  derived from EOG,
VOG, or IROG), and autonomic indicators (e.g. pupillography) [126].

Most sleepiness detection and prediction systems are based on objective
measurements [53, 131–133]. These systems can be divided into monitoring
methods and fitness-for-duty methods. Real time sleepiness monitoring aims
e.g. to alarm a driver when sleepiness reaches a severe level. Fitness for duty
is  a  complex  concept  that  aims  to  estimate  whether  a  person  is  able  to
perform his/her duty (e.g. work-shift) (see reviews [134, 135]. Many factors
may  degrade  performance,  e.g.  medical  factors,  drugs,  alcohol,  and
sleepiness.  Additionally,  these  methods  aim  to  estimate  (e.g.  using
mathematical models) whether a person’s sleepiness may reach a severe level
during a work-shift e.g. [131, 132].

4.1 AROUSAL DECREMENT MEASURES: OCULAR 
PARAMETERS 

Ocular  parameters  are  widely  used  as  a  sleepiness  measure  in  sleep
deprivation studies and sleepiness monitoring assessment e.g. [44, 45, 136,
137]. Spontaneous blink parameters are suitable for monitoring an actively
operating  person,  while  some  saccade  parameters  such  as  peak  velocity,
amplitude, and duration are challenging to measure reliably in naturalistic
settings.

Oculomotor activity decreases when sleep deprived; blinks and saccades
cease, fixations get longer, and an increasing number of SEMs occur before
sleep  onset  [138–140].  The  relationship  between  blink  frequency  and
sleepiness  is  inversely  U-shaped.  Increasing  sleepiness  first  increases  the
blink  frequency  e.g.  [59,  141,  142]  until  the  person  is  lapsing/having
microsleeps (wake-state instability) [44]. Blink duration [44, 49, 137, 141],
especially the duration of the opening phase increases when sleep deprived
[44]. Additionally the blink amplitude and peak velocity of the eye closure
decreases [59, 137, 143] and the ratio between blink amplitude and the peak
velocity of the eye closure have been used in real time monitoring, e.g. with
commercial drivers [53, 137].

Saccade  main  sequence  parameters:  Saccade  amplitude,  duration,  and
SPV decrease with increasing time on task (e.g. in driving simulator)  [44,
142, 144–147]. However, SPV values are challenging to measure in an actively
operating person because the velocity depends on the saccade amplitude. In
tasks that simulate real-life situations (e.g. a driving simulation) where the
participant  can  view  their  environment  freely,  the  changes  in  saccade
parameters (SPV, amplitude, and duration) can be the result of many factors:
e.g. changes in viewing strategy (smaller saccades leads to shorter durations
and  slower  velocities),  sleepiness  related  deceleration,  etc.  Di  Stasi  et  al.
(2012, 2013) measured eye movements during a 2 h driving simulation. They
compared  the  peak  velocity  values  by  dividing  the  saccades  into  four  30
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minute windows and estimated the main sequence curve for each window
[146, 147]. They found that the slope of the saccade decreased with increasing
time  on  task.  Ueno  and  colleagues suggested  that  the  bluntness  of  the
saccade  velocity  curve  depicted  by  the  SPV/duration  (SPV/D)  index  is
sensitive to sleepiness and suitable  for on-line monitoring for e.g.  drivers
sleepiness [148, 149].  

4.2 ATTENTION-BASED BEHAVIORAL METHODS 

Sleep  deprivation  impairs  human  performance,  which  increases  reaction
times, the number of response omissions, memory deficits etc. e.g. [11, 12,
126].  The behavioral  methods can be  divided into  two main categories  1)
cognitive and 2) psychomotor tests. Cognitive tests include memory, logical
reasoning, and attentional tasks whereas psychomotor tasks include tracking
and tapping tasks. 

The Psychomotor Vigilance Task (PVT) is much used to study sustained
attention  in  sleep  deprivation  studies  e.g.  [16,  63].  The  test  is  a  simple
reaction time task where the person responds to a visual stimulus by pressing
a button. The task lasts 10 minutes with 2 – 10 s inter-stimulus-interval. The
number  of  lapses  (reaction  times  >  500  ms),  errors  (omissions  and
commissions),  and  reaction  times  in  PVT  increases  during  acute  and
cumulative sleep deprivation e.g. [16, 36, 63, 150–152]. Long reaction times
and  omissions  in  the  PVT  task  have  been  suggested  to  be  a  result  of
attentional lapses and microsleeps caused by wake state instability  [11, 63].
Balkin  et al.  made a profound comparison study of instruments that assess
sleepiness in an operational environment. They found PVT to be one of the
most  sensitive  tests  to  identify  sleepiness  related  performance  decrement
[153]. A shorter, 3-minute version of PVT has shown promising results as a
fitness  for  duty  measure  for  luggage  screeners  and  possibly  other
professional screeners in operational environments [154].

4.2.1 ORIENTING ATTENTION AND EYE MOVEMENTS 

Saccade tasks permit simultaneous attention and sleepiness assessment; the
performance parameters in the saccade tasks (e.g. saccade latency, error rate)
measure  visuospatial  attention whereas  oculomotor  parameters  (e.g.  SPV,
saccade accuracy) measure decrement in arousal [111].

The  SPV  of  visually  guided  saccades  decreases  during  partial  sleep
deprivation, total sleep deprivation, and it is affected by the circadian rhythm
[46–48, 50, 51, 133]. The decrease in SPV during sleep deprivation has been
suggested to be a result of a reduced burst rate in the brainstem [48].

The latency of visually guided prosaccades increases with increasing sleep
deprivation and varies with circadian rhythm e.g.  [46, 47, 50].  Fimm and
Blankenheim found that the saccade latencies increase in overlap paradigm
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but not in gap paradigm between low and high arousal stages during 24 h of
time awake  [61].  Also  antisaccade  latencies  increase  during  30 h  of  time
awake [155]. 

Bocca and Denise found that after one night’s sleep deprivation the gap
effect  (difference  between  overlap  and  gap  latencies)  increased,  which
suggests  that  disengagement  of  attention  was  impaired.  The  gap  effect
increased in every  participant (N = 10) [111].  However,  the saccadic  peak
velocity did not decrease which suggests that the disengagement of attention
was not a result of decreased alertness [111].

Error  rates  in  saccade  tasks  have  been  reported  only  in  a  few  sleep
deprivation studies [19,  110].  Porcu  et  al. found a significant linear  trend
between the prosaccade error rate (fraction of rejected saccades) and time
awake after one night of sleep deprivation [110]. Five participants executed
the saccade task every 2 h from 12 h until 24 h of time awake. Saccade task
performance correlated with the shortening of sleep latency at MSLT. Similar
results have been achieved in a cumulative sleep deprivation study with 24
participants using a modified spatial cueing task [19]. Wachowicz et al. found
that  false  starts,  failures  in  response  selection,  and  direction  errors  were
linked to circadian variations [19]. They also found that an increasing sleep
drive increased the number of omissions and commissions. They suggested
that  the  former  could  be  related  to  the  impairment  of  the  orienting
attentional  system  while  the  latter  could  be  explained  with  failures  of
sustained attention [19]. 

The  fitness  impairment  tester  (FIT,  Pulse  Medical  Instruments,  Inc.,
Rockville, MD) is a commercially available fit-for-duty device. FIT measures
pupillographic (initial pupil diameter, pupil-constriction latency, and pupil-
constriction  amplitude)  and  saccade  velocity  in  a  short  (30  s)  horizontal
saccade task. The SPV measured with FIT has shown significant decrement
in sleep deprivation studies e.g. [54, 133]. Balkin  et al.  on the other hand
found  no  significant  decrease  in  SPV  values  measured  with  FIT  in  their
comparison study on partial sleep deprivation [153].

4.3 TIME AWAKE METRICS

This thesis focus on acute sleep deprivation caused by prolonged time awake.
The approach was chosen to limit the broad concept of sleepiness. Sleepiness
and  time  awake  are  related:  Sustained  wakefulness  causes  acute  sleep
deprivation and increases the homeostatic sleep drive. Moreover, acute sleep
deprivation is easier to generate and administer in research setups than e.g.
cumulative sleep deprivation.

Even though it is known that many cognitive functions are vulnerable to
prolonged  time  awake,  the  literature  concerning  time  awake  metrics  is
limited. There is only one convincing attempt to develop a time awake tester;
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a 30-second postural  balance test  was  accurate  and precise  in  estimating
time  awake [39–43].  However,  a  portable,  on-site  usable  balance  tester
requires comprehensive field testing before large scale initialization [42].

Additionally,  a  recent  conference  abstract  reports  on  a  study  where
several oculomotor behavior parameters measured in a visual tracking task
changed as a function of circadian rhythm and time awake [52]. 
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5 AIM

This thesis examines whether an eye movement based metric, measured with
EOG,  can estimate  time awake outside  the  laboratory.  The metric  should
work on individual level and be practical to use. 

Research question:  Can an EOG based method estimate time awake
outside the laboratory? 

The thesis consists of two parts: 1) Algorithm development for EOG feature
extraction  (publications  II,  IV),  2)  Sleep  deprivation  (60  h  total  sleep
deprivation) study conducted outside the laboratory (publications I, III). The
specific publication aims are presented below.

Publication I 
EOG measurement conducted outside the laboratory: The aim was to study
whether saccade peak velocity (SPV) values are sensitive to sleep deprivation
using a conventional study setup and analyses.

Publication II
The aim was to develop a reliable calibration-free algorithm for EOG feature
extraction (blinks and saccades). 

Publication III 
The aim was to examine if  an eye based metric,  measured with EOG can
estimate time awake outside the laboratory. 

Publication IV
The aim was to develop a computationally light algorithm for EOG feature
extraction (blinks and saccades). 
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6 FEATURE EXTRACTION

Two  algorithms  for  EOG  signal  feature  extraction  were  developed.  The
automated  auto-calibrating  algorithm  (publication  II)  was  developed  to
automatically estimate threshold values for saccades and blinks, this to allow
testing the SPV analyses without calibration in a sleep deprivation study. The
semi-supervised probabilistic algorithm (publication IV) is computationally
light to allow fast analysis of the EOG data. 

6.1 ALGORITHM II (AUTO-CALIBRATING) 

The  algorithm  consists  of  four  blocks  (for  details  see  publication  II):  A)
artifact  removal,  B)  estimation  of  amplitude  threshold  values,  C)  feature
extraction, and D) feature classification. The input for the algorithm are the
EOGh and EOGv signals (see electrode configuration and signals in Fig. 8).
The EOG signal drift is removed using polynomial detrending and the high
frequency artifact by using wavelets. The automatic thresholds are estimated
separately  for  blinks  and  saccades  by  using  peaks  present  in  the  eye
movement  signal  and  in  the  eye  velocity  signal  (EOGh_diff and  EOGv_diff).
Estimated threshold values are used to detect peaks related to eye movement
features (saccades and blinks) in the EOG signal and the found features are
classified into correct eye movement classes.

6.2 ALGORITHM IV (PROBABILISTIC)

The  algorithm  employs  filtering,  feature  extraction,  training,  and  event
detection  stages  (details  in  publication  IV).  The  detection  method  is
probabilistic, meaning that each sample (in the EOG signal) is assumed to be
a part of a saccade, blink or fixation. The sum of probabilities is always one. 

The algorithm uses Bayes theorem to estimate the probability of a certain
event.  Prior  to  event  detection,  the  algorithm is  trained to  determine the
likelihood and the  prior  probability  of  each  feature  class.  The  training  is
unsupervised which means that the class identities of the training samples
are unknown. During training, the features (saccades, blinks, and fixations)
are  detected  from  eye  movement  signals  (EOGh and  EOGv)  (electrode
configuration  shown  in  Fig.  8.)  and  from  velocity  signals  (EOGh_diff and
EOGv_diff). 

Signal denoising is performed using two-stage filtering with two separate
FIR low-pass filters with cutoff frequencies at 1 Hz and 40 Hz. In the feature
extraction stage the EOG signal is filtered with the preceding low-pass filter
that  removes  high  frequency  noise  to  make  feature  (blink,  saccade,  and
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fixation) detection easier. The temporal parameters of the detected features
are then estimated from the raw signal filtered with the latter low-pass filter
to avoid distorting the temporal parameters.

6.3 TESTING 

The EOG was measured with four AgAg-Cl electrodes (Technomed Europe,
Maastricht,  The Netherlands)  (see  electrode placement in  Fig.  8)  and the
electrodes  were  grounded to  the  left  mastoid  (M2).  The  EOG  signal  was
recorded with a NeurOne amplifier (Mega Electronics Ltd., Kuopio, Finland);
500Hz sampling rate, lowpass filter (-3 dB cutoff 125 Hz). In ALGORITHM II
testing the direct current (DC) measurement was used and in ALGORITHM
IV testing an alternating current (AC) measurement was done (highpass filter
-3 db cutoff 0.16 Hz). 

Prior  to  the  experiments  ALGORITHM  IV  was  trained  with  a  short
training procedure. The training set included five black dots, whose size was
one degree of viewing angle. The subjects were instructed to fixate on the
dots for random durations in random order, and to blink freely when needed.
The  training  lasted  one  minute.  Since  the  method was  unsupervised,  the
times of the occurrence of the events was not recorded.

The performance of the algorithms was determined using two different
kinds of experiments to estimate the robustness (sensitivity, specificity) and
consistency of the algorithm. In testing ALGORITHM II, a controlled saccade
task (experiment 1) and a free viewing task (experiment 2)  were used.  In
testing  ALGORITHM  IV,  a  fixed  saccade-saccade-saccade-blink  sequence
task was used in both experiments. In experiment 1 the saccade amplitude
was fixed (7.1°, 5.7°, 4.3°, 2.9°, 1.4°) and in experiment 2 the amplitude was
randomized (between 2.2° and 35.7°). 

In  ALGORITHM  II  tests  the  eye  movements  were  recorded
simultaneously  with  a  VOG  device  (EyeLink,  SensoMotor  Instruments
GmbH.,  Teltow,  German)  with  250  Hz  sampling  rate.  The  EyeLink  was
calibrated with a 9-point calibration before the experiments for each subject.
The EOG signal was used as a test signal for the algorithm whereas the the
VOG data provided an estimate of the participants eye movements. Using the
two eye movement measurement techniques made it possible to study the
robustness of the algorithm. The number of blinks were visually scored from
the  vertical  EOG  signal  according  to the American  Academy  of  Sleep
Medicine  Manual for Scoring of Sleep and Associated Events [83] in both
testing  protocols.  More  details  of  the  test  protocols  are  reported  in
publications II and IV. 

Analyzing the performance of the feature extraction algorithms for eye
movements is challenging, since no ‘ground truth’ is available. The presented
estimates of the algorithm performance depend on the measurement result
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of  the  VOG  device  (EyeLink),  the  visual  scoring  (blinks),  and  that
participants performed the given saccade tasks as instructed.

6.4 RESULTS

The performance of the algorithms was evaluated using true positive rates
(TPR = sensitivity) and positive predictive values (PPV = precision)11 [156].
Equations are presented in Appendix II. The results of the performance tests
are presented in Table 1. 

In ALGORITHM II testing 1920 saccades and 213 blinks were analyzed in
experiment 1. The TPR of the saccade detection was 95 % for all saccades.
The blink detection TPR was 93 % whereas PPV was 96. In experiment 2 the
EyeLink found 2895 saccades. The TPR for the EOG measurement was 74
and PPV 73.  However,  when only saccades with 30−80 ms duration were
used,  the  EyeLink  detected  1351  saccades  and  ALGORITHM  II  TPR  for
saccade detection was  97 and PPV 94.  Altogether  96 blinks  were  visually
scored during experiment 2. Detection TPR for blinks was 74 with PPV of 90.
The  blink  durations,  the  durations  of  the  horizontal  saccades,  and  peak
velocities  of the horizontal  saccades were similar to  those reported in the
literature. 

In ALGORITHM VI testing 777 saccades and 259 blinks were analyzed in
experiment 1. The detection TPR for blinks was 100 and PPV 99 whereas for
saccade  detection  TPR  was  77  and  PPV  86.  In  experiment  2  the  blink
detection TPR was 99 with 99 PPV whereas the saccade detection TPR was
93 and PPV 88, respectively. The saccade and blink durations are similar to
those reported in the literature. 

Small saccades, especially vertical ones, are difficult to detect because the
vertical  components  of  the  EOG  signal  are  weaker  than  the  horizontal
components and because eyelid movement induces a major artifact into the
vertical EOG signal [116]. This phenomenon is seen in the performance of
both algorithms. If the smallest saccades are removed from the dataset, the
performance of the ALGORITHM II improves. In addition, the performance
of the ALGORITHM IV is better in experiment 2 where the participants made
larger saccades than in experiment 1. 

11 PPV were used when the false positive (FP) values were available
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Table 1. Results of the performance tests

Algorithm Experiment Eye
movement

Number of
events

TPR
(Sensitivity)

PPV
(Precision)

II 1 blink 213 93 96

N=3 saccade 1920 95 -

2 blink 96 75 90

N=3 saccade 2895 74 73
saccade

(30−80ms) 
1351 97 94

IV 1 blink 259 100 99

N=7 saccade 777 77 86

2 blink 148 99 99

N=4 saccade 444 93 88
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7 MATERIALS AND METHODS

This chapter presents eye movement data collected during 60 h prolonged
time  awake.  The  eye  movement  measures  were  conducted  as  part  of  a
research project in which the effect of sleep deprivation on performance in
two high-speed navigation systems was studied [157]. The study was carried
out in ship simulators at the Naval Academy, Bergen. The EOG data were
used in publications I and III to develop the eye movement based time awake
metrics.

7.1 PARTICIPANTS

Eleven male navigators from the Royal Norwegian Navy (RNoN) volunteered
for the study (I, III) (mean age = 26.6, SD 2.2, range 23 – 30 years). The
participants  had  no  somatic  or  psychiatric  health  issues  (including  sleep
disorders and abnormal sleep habits), and they reported no current use of
medication  [157].  The  participants  reported  normal  sleep  length  (before
working days: mean 6.9, SD 0.7, range 6 – 8 h ), and were all classified as
“intermediate” types using the Composite Morningness Questionnaire [158]. 

7.2 STUDY DESIGN

Measurements  were  performed  during  two  separate  study  weeks,  each
comprising 60 h of sleep deprivation. A 10-week washout period between the
study weeks eliminated carryover effects. The eye movements were measured
in eight participants during the first measurement week. Five participated in
both measurement weeks. 

On the first study day, the participants arrived at 8:00 am and the first
navigation session started at 9:00 am A single navigation session lasted 2.5
h, including preparation and rest breaks. After navigation, the participants
filled  out  questionnaires.  Next  an  80-min  period  followed  where  the
participants underwent eight vision tests in a darkened test room (< 5 cd),
including the saccade tasks measured with EOG. The test cycle (preparation -
simulator navigation session - questionnaires - vision tests) was repeated 10
times. The same test cycle was followed throughout the study. Participants
who  showed  signs  of  falling  asleep  were  prompted  to  stay  awake  by  a
research assistant. The eye movement data from the first nine test cycles is
presented in this thesis, since the saccade task measured with EOG was not
measured during the 10th test cycle as the participants were too tired to carry
out the saccade task.
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To emulate realistic conditions the participants were allowed to use caffeine
and tobacco. The use was limited to the number of units that each participant
reported that  he consumed during an ordinary workday (this  information
was obtained at the time of recruitment). None of the participants smoked,
but one used smoke-free tobacco during the measurements.

7.3 SACCADE TASK MEASURED WITH EOG

EOG was measured using bipolar coupling and the electrodes were grounded
to  M2.  Horizontal  and  vertical  EOG  was  measured  with  four  AgAg-Cl
electrodes (Technomed Europe, Maastricht, The Netherlands) placed at the
outer canthi of both eyes, as well as above and below the left eye, see Fig. 8.
The  EOG  signal  was  recorded  with  an  Embla  A10  device  (Medcare,
Reykjavik, Iceland) at 200 Hz sampling rate and 0.5 – 90 Hz bandwidth (AC
measurement). 

The  saccade  task  was  implemented  using  the  Presentation  software
(Neurobehavioural systems, Albany, CA, version 9.70). The participants sat
in a chair at 70 cm distance from the computer screen.  The distance was
confirmed before every measurement. Participants were instructed to sit still,
avoid blinks, and to look at the location of the central fixation point until the
target stimulus appeared, after which they were supposed to move their gaze
as quickly as possible to the target stimulus. When the stimulus disappeared,
they were instructed to move their gaze back to the central fixation point. The
saccade was 10° (degrees of  visual  angle)  whereas the size of  the fixation
point  and  the  target  stimulus  was  1°.  The  saccade  task  consisted  of
alternating A (overlap stimulus) and B (gap stimulus) blocks (see Chapter 3,
Fig.6, and publication I and III for further details). 

7.4 ANALYSES

7.4.1 SACCADE PEAK VELOCITY (SPV)

In publication I  the calibration between EOG and eye movement was used
and  the  saccades  and  blinks  were  estimated  using  a  velocity  threshold
method.  The  SPV  values  were  estimated  from  the  correctly  executed
saccades. The difference between the number of correctly executed saccades
between the overlap and gap paradigms were tested with the Kruskal-Wallis
test.

The first measurement after 6 h of time awake was used as a baseline
measurement, and was set to 100 %. The relative change from the baseline
was calculated from the individual baseline value in all time-awake measures.
The  Mann-Whitney  U  test  was  used  to  compare  the  difference  between
baseline  and each consequential  time-awake  data point.  The comparisons
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was made for the  all  SPV measurements measured with  EOG. Bonferroni
correction was applied to all baseline vs. time-awake classes, with the level of
significance, p, set 0.006 (0.05/8).

7.4.2 NUMBER OF SACCADES

The analysis chain for the number of saccades is presented in Fig. 10. The
number of saccades was calculated from the saccades collected during the
saccade task.  All  horizontal  saccades with  a duration between 40 ms and
100ms were analyzed and deemed to represent the participant’s performance
in  the  saccade  task12. Based  on  Porcu  et  al. [110] results  a  simple  linear
regression  model  was  fitted  to  estimate  the  linearity  of  the  decrease  in
number of saccades as a function of time awake. 

The time between saccades (TBS) was calculated from the saccade time
series  by  subtracting  the  starting  time  of  a  saccade  from  the  previous
saccade’s starting time. TBS values were also used to examine how the novel
analysis  is  related to  the  traditional  event  by  event  method (described in
detail in publication I).

The C and S components of the TPMA were fitted to  the eye movement
data (see  Chapter 2).  After fitting,  the C-process was subtracted from the
predictor (P) and from the original number of saccades to estimate the time
awake/ sleep pressure (S). 

12 The durations of the 10° horizontal saccades are between 43–59 ms [159], therefore the saccades which

lasts 40–100 ms are possibly related to reactions to saccade task stimuli.
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Fig.  10.  The analysis  chain for  the number of  saccades.  The number of  saccades for  each
participant was measured in the saccade task using EOG. The linear model was fitted to examine
the linearity  of  the decrease in the number of  saccades. To improve the linear  fit  the three-
process model of alertness was fitted to the data. After fitting, the C component was removed
from the measured data to allow us to examine the exponential function without interference from
the sinusoidal component.
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8 MAIN RESULTS

8.1 SACCADE PEAK VELOCITY (SPV)

The SPV values  were  estimated  for  saccades  collected  during the  overlap
paradigm (A-block) since the number of correctly executed saccades in the
gap  paradigm  (B-block)  was  significantly  lower  (Fig.  11)  in  every
measurement block. 

The high error rate in the gap paradigm was due to the high number of
anticipatory responses (saccade latencies with < 100 ms), direction errors,
and blinks compared to the overlap paradigm. 

 

Fig.  11. Mean  fraction  of  correctly  executed  saccades  to  presented  stimuli.  In  the  overlap
condition  the  number  of  correctly  made  saccades  were  significantly  higher  than  in  the  gap
condition. The cumulative measurement blocks (20 saccades = light blue, … ,100 saccades =
dark blue) are presented and the error bars are standard error of mean.

The  SPV  values  measured  with  EOG  decreased  with  increasing  time
awake compared to a baseline (6 h) (Fig. 12).  The mean SPV values were
calculated for each 20 saccade block (A1, A2, A3, A4, and A5) separately and
for  cumulative  blocks  (A1=A20,  A40,  A60,  A80,  and  A100)  to  study  how  an
increasing time on task effects the SPV values. 

The SPV values differed significantly from the baseline after 12 h of time
awake for A1, A2, A3, A40, and A60 blocks. The blocks A4, A5, A80 and A100
differed significantly after 18 h of time awake. Fig. 12. shows that in short
measurements (A1, A2, A3, A40, and A60) the SPV values are more affected by
the circadian rhythm than in long measurements (A4, A5, A80 and A100 ). 
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Fig.  12.  Relative change in peak velocity compared to the baseline (set as 100 %) for each 20
saccade  block:  A1,  A2,  A3,  A4,  and  A5,  and  cumulative  blocks:  A20, A40,  A60,  A80,  and  A100

Measurement points that differ significantly (p < 0.006) from the baseline are marked with black.

8.2 NUMBER OF SACCADES

Fig. 13 shows  the number of saccades as a function of time awake for each
participant (N = 11).  The linear fit  were calculated for each participant to
estimate the linearity of the decrease in the number of saccades as a function
of  time  awake  and  to  examine  individual  differences.  The  saccade  task
included 200 stimuli and 200 return saccades, which means that when the
participant has performed the task correctly the number of saccades should
be close to 400. 

Fig. 14. shows the proportion of correctly executed saccades (dark blue
bars) as well as different kind of errors in the individual level analyzed using
a traditional event by event analyses. The saccades have been analyzed by
comparing the participants reaction to each saccade stimulus (altogether 200
stimulus per measurement). Correctly executed saccades were responses that
have been to the same direction than the stimulus in 80 – 700 ms window
after the stimulus have appeared and the accuracy of the executed saccade
was between 0.5 – 1.5 [160, 161]. Trials including blinks, oblique saccades,
omissions, direction errors, undershoot (gain < 0,5), overshoot (gain > 1.5),
and  anticipatory  reaction  (<  80  ms)  have  been  classified  as  erroneous
reactions.
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Fig. 13. Number of saccades as a function of time awake. The number of saccades as a function
of  time  awake  and  estimated  linear  fits  (blue  line,  gray  areas  denote  95  %  Cl)  for  each
participant.  The  caption  above  each  plot  represents  the  participant  number,  blue  participant
number denotes for p < 0.05 for the linear fit. Due to technical problems (e.g. loose electrodes)
some measurements are missing, they are marked with a star in the figure. 

Fig. 14. Proportion of correctly executed saccades and different kind of errors in the saccade
task.  The numbers  on the  colored bar  denotes  for  proportion  of  each response type to  the
saccade stimulus. The caption above each plot represents the participant number. The proportion
of correctly executed saccades are marked with dark blue bars.
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TBS values were calculated to examine individual differences in saccade task
performance  as  well  as  to  link  the  proposed  novel  saccade  task  analysis
method to traditional event by event analysis. Some participants exhibited
bimodal TBS distributions, with peaks on both sides of one second  (Fig. 15).
If  the  participant  performs  the  task  correctly  the  TBS  value  should  be
approximately one second. However, if the TBS value is much less than 1 sec
the  participant  probably  made  an  corrective  right  after  the  erroneous
reaction  (anticipatory  saccade,  direction  error,  undershoot,  or  overshoot)
(Chapter  3).  TBS  values  much larger  than  1  s  imply  that  the  participant
blinked  or  did  not  respond  to  the  stimulus  (omission).  Based  on  these
observations the TBS were divided into three groups: fast response (< 0.5 s),
normal response (0.5 – 1.5 s), and late response (> 1.5 s). Fig. 16 shows a
cumulative sum of TBS values in each TBS class relative to the duration of
the saccade task.

Fig. 15.  TBS violin distributions and mean TBS values. TBS distributions (blue) and mean TBS
value (black line) for each time awake measurement. The y-axis range is set from 0 to 6 to
visualize the individual differences. The participant ID is marked above each plot. 

Fig.  17  shows  the  number  of  saccades  of  the  first  and  second
measurement in five participants (2, 3, 5, 6, and 7) who performed the study
twice. The correlations between the time series are calculated using cross-
correlation (lag  = 0).  The correlation  coefficient  values  were  0.62 – 0.96
(mean 0.79).
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Fig. 16. Time between saccades. The proportion of time (cumulative sum of TBS) of fast < 0.5 
sec (black), normal 0.5 – 1.5 sec (dark blue), and late > 1.5 sec (light blue) TBS values for each 
participant. The caption above each plot represents the participant number.

 

Fig. 17. Repeatability (N = 5). Number of saccades, the first measurement is light blue whereas 
the second one is dark blue. The correlation coefficient (R) is presented at the lower left. Missing 
values are marked with a star.

The three-process model of alertness (Chapter 2.1) was used to model the
saccade task performance. We fitted the model’s C and S components to the
number of saccades and removed the C component from the fit model. In Fig.
18  the  results  of  fits  and the  remaining  S  component are  presented.  The
goodness of fit differs between the participants. The results of the linear fits
after removing the C component are presented in Fig. 19.
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Fig. 18. Fit of TPMA model’s S and C -components. A monotonous relation between TBS and
time awake for each participant (caption above each plot  indicates participant number).  Blue
circles  represent  original  data,  the  blue  line  is  the  result  of  fitting,  the  black  line  is  the  S
component of the model whereas the black dashed line is a 95 % CL for the S component. The
black circles are the original  data without the C component.  The missing measurements are
marked with a star, and R² values are shown for each fit.

Fig. 19. Number of saccades as a function of time awake after removing the C-component. The
number of saccades after removing the C-component as a function of time awake and estimated
linear fits (blue line, gray areas denote 95 % Cl) for each participant. The caption above each plot
represents the participant number, the blue participant number denotes for p < 0.05 for the linear
fit. The missing values are marked with a star in the figure.
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9 DISCUSSION

This thesis examines whether saccadic eye movements derived from an EOG
signal could be used as an one-site estimator for time awake. This approach
was chosen since eye movements are sensitive to sleep deprivation e.g. [44–
48,  50–52,  132] and  since  EOG  is  a  widely  used  technique  to  measure
saccadic  eye  movement  during  sleep deprivation  studies  carried  out  both
inside  and  outside  the  laboratory  e.g.  [44–48,  59,  60,  132] Moreover,
cognitive functions, especially the attentional ones, are susceptible to sleep
deprivation e.g. [13, 14, 20].  The oculomotor and attentional functions share
neuroanatomical  networks  in  the  brain  [55,  56].  Therefore,  saccadic  eye
movement have been used to study attentional functions e.g. [18, 55, 57]. The
oculomotor  parameters  are  usually  measured  in  a  saccade  task.  This
neurobehavioral  task  permits  simultaneous  attention  and  sleepiness
assessment;  the  performance  parameters  measure  visuospatial  attention
whereas  the  oculomotor  parameters  measure  the  decrement  of  arousal
(compared to a baseline) [111].

The approach was tested in this thesis work on eleven male navigators
from the RNoN. They performed  a 8-minute  saccade task every 6th hour
until 60 h of time awake. Five navigators repeated the protocol after a 10-
week washout period. The study was designed to emulate real life conditions:
Participants were allowed to use caffeine and tobacco, stimulants which are
usually prohibited in sleep deprivation studies e.g. reviews [20, 162].

9.1 SACCADE  PEAK  VELOCITY  (SPV)  ESTIMATION
OUTSIDE THE LABORATORY

The relative changes in SPV compared to the baseline showed a decreasing
trend in group level analyses. The SPV decreased significantly after 12h of
time awake compared to the baseline (Fig. 12) (publication I). This result is
line with the literature e.g. [46–48, 51, 61, 133, 163, 164]. The SPV values
were estimated from correctly executed saccades in the saccade task. This
requires event by event analyses and thus triggering between the stimulus
and the  EOG  signal.  Additionally,  calibration  between  the  eye  movement
signal and the actual eye movement was needed in order to reliably estimate
the SPVs.

An auto-calibrating algorithm (ALGORITHM II) was developed to extract
features  from  the  EOG  signal  without  calibration  (publication  II).  In
ALGORITHM II the signal denoising was executed in a way that does not
distort the temporal parameters of horizontal saccades, especially the SPVs.
ALGORITHM II is slow, since it estimates the threshold values for feature
detection from the entire data batch.
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ALGORITHM II extracted features from the EOG signal collected during
a saccade task done every sixth hour until 60 h of time awake. The SPV/D
index of every executed saccade during the saccade task was analyzed. The
index  estimates  the  bluntness  of  saccade  velocity  curve  [148,  149].  This
approach could have made the SPV estimation easier to execute on-site by
circumventing  the  need  to  calibrate  the  eye  movement  signal  and  to  use
event by event saccade task analysis. 

The results showed that the changes in the SPV/index were mainly due to
amplitude changes in the EOG signal. The correlation between the amplitude
and SPV/index was 0.9 (SD = 0.2, N = 16). The amplitude, duration, and the
peak velocity of the saccade are closely related to each other according to the
main  sequence  theory  [91,  92].  However,  the  reason  for  the  saccade
amplitude changes and thus changes in the SPV/D index was unknown. The
participants went through adaptation before the EOG measurements but the
magnitude of the EOG amplitude is also related to e.g. electrode placements.
In long measurements (several days) the EOG electrodes may partly detach
for many reasons (e.g the glue/paste of the electrode dries, the participant
scratches the electrode). In 60 h sleep deprivation study the EOG electrodes
were  changed  when  needed  and  these  interventions  were  not  recorded.
Consequently  our data does not  permit  studying the SPV/D index during
prolonged  time  awake.  The  lack  of  confidence  in  the  amplitude
measurements made us choose the number of saccades as biomarker instead
of the SPV.

9.2 NUMBER  OF  SACCADES  ESTIMATION  OUTSIDE
THE LABORATORY

The number of  correctly  executed saccades  in the  saccade task decreased
during  prolonged  time awake  in  publication I (Fig.  10).  The results  were
similar to those reported by Porcu and colleagues  after one night of sleep
deprivation [110].

To closely study the executed saccades and timing between them in the
saccade task, all detected horizontal saccades (40  –  100 ms duration) were
analysed (publication III). ALGORITHM II was used to detect saccades. This
analysis technique does not require event by event analysis of the saccade
task. Fig. 13. shows that the number of saccades decreased as a function of
time awake and that the linear trend was significant in three participants.
Since, the circadian rhythm affected the number of executed saccades (Figs.
13, 15, and 16), the TPMA was fit to the data and the circadian component (C-
component) was removed from the measured data (Fig. 18). After removing
the  circadian  component  a  mathematically  monotonous  relation  between
performance in the saccade task and time awake was evident and the linear
model showed a significant trend for six out of eleven participants (Fig. 19).
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The decreasing number of saccades was a result of increasing TBS in the
saccade task (Figs. 15 and 16). TBS values were divided in to fast, normal,
and late responses to permit linking the studied analysis method result to
results obtained with traditional saccade task analyses. Figs. 14 and 16 shows
that  TBS  values  >  1.5  s  were  mostly  due  to  omissions  (lapses)  and
anticipatory  reactions  (false  starts).  Both  omission and commissions  (e.g.
reactions  without  stimulus  or  false  starts),  have  been  associated  with
sustained attention deficits caused by wake-state instability e.g. [2, 16, 63,
68]. The number of lapses e.g. [36] and false starts [165] have been reported
to increase when being measured with PVT during prolonged wakefulness.

Sleep  deprivation  has  been  reported  to  increase  the  number  of
anticipatory saccades and omissions in a saccade task  [110]. In a cumulative
sleep  deprivation  study  failures  in  response  selection  (anticipatory  or
premature  responses)  and  direction  errors  during  a  cued  saccade  task
(orienting attention task) were suggested to be linked to circadian rhythm
whereas increased errors in response execution were proposed to be linked to
sleep drive [19]. These authors concluded that the former could be related to
impairment in the function of the orienting attentional system whereas the
latter could be explained by failure to sustain attention.

Even though the results  in publication III  suggest  that  there  are  large
differences  between  individuals  in  saccade  task  execution  under  sleep
deprivation  (Figs.  14  –  18),  the  proposed  saccade  task  analysis  method
identifies sustained visual attention deficit on individual level.

Five participants went through the study protocol twice, which allowed us
to study the repeatability of the saccade task performance. Fig. 16 shows that
the performance was rather stable within individuals:  The correlation was
between 0.62 and 0.96 (mean 0.79). Similar results have been obtained with
PVT and other cognitive and reaction time tasks [166–169]. Further, genetic
factors  may  explain  sleepiness  related  inter-individual  variations  in
neurobehavioral decrements [20, 170, 171]. There is evidence that phenotypic
neurobehavioral responses to sleepiness are stable over long-time intervals,
even years  [168,  172].  This  suggests  that  even though the  current  system
needs  personal  calibration  before  the  actual  time  awake  measurements,
probably no frequent calibration is needed.

9.3 FEATURE EXTRACTION FROM THE EOG SIGNAL

SPV  estimation  from  the  EOG  signal  is  more  challenging,  from  a  signal
processing perspective,  than estimating the number of  saccades.  The SPV
estimation requires calibration between the eye movement and EOG signal as
well as denoising methods that do not distort the temporal parameters of the
eye movements e.g. [119, 120, 173]. The auto-calibrating algorithm for feature
extraction (ALGORITHM II) was developed to extract features from the EOG
signal  without  calibration.  ALGORITHM  II  was  developed  for  horizontal
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saccade analyses and the signal denoising was executed in a way that does
not distort the temporal parameters, especially those in the SPV. However,
ALGORITHM II is slow, since it estimates the threshold values for feature
detection from the entire data batch.  A  computationally light, probabilistic
ALGORITHM IV was  developed to rapidly extract  features  from the EOG
signal publication IV). The algorithm processes data sample-by-sample and
can therefore extract features from the EOG data faster than ALGORITHM
II. The performance of ALGORITHM IV was better than that of the auto-
calibrating  algorithm  (publication  II)  with  respect  to  the  sensitivity  and
precision  of  saccade  and  blink  detection  (Table  1).  Even  though
ALGORITHM  IV  is  a  semi-supervised  method  (requires  a  short  training
period before feature extraction), it offers a reliable, robust, and fast tool for
EOG signal feature extraction suitable for field studies.

Lately  Korda  et  al. (2018)  published  an  automated  algorithm  that
employs  the  mean  value  of  the  logarithm  of  divergence  and  the  largest
lyapunov exponent to identify saccades and blinks [174]. The algorithm was
developed for IROG data but achieved high precision when used to detect the
saccades and blinks from the EOG signal; saccades with 91.1 % precision and
blinks with 100 % precision (N = 300, altogether 25000 saccades and 2366
blinks). Therefore, Korda’s calibration free and automatic feature extraction
method  should  be  tested  using  EOG  data  recorded  in  different  kinds  of
setups (e.g. outside the laboratory) in future studies.

9.4 STRENGTHS AND LIMITATIONS

The time  awake  metric  should  estimate  for  how long  a  person  has  been
awake with a certain confidence, and potentially be generalizable to everyone
with or without personal calibration. Cheating should be avoided/identified
by using physiological parameters which are under involuntary control. The
metrics should be practical, easy to use on site, be as unobtrusive as possible,
low-cost,  and permit large scale use. The strengths and limitations of this
thesis work are discussed relative to these requirements.

RELIABILITY, REPEATABILITY, AND GENERALIZABILITY
The results showed a monotonic relation between saccade task performance
and time awake for all  eleven participants. The repeatability test with five
subject  showed  high  correlation  between  the  first  and  second  week
measurements. These results suggest that the metric could be used as time
awake metrics as long as personal calibration has been done beforehand. In
this  thesis  prolonged  time  awake  was  used  as  a  metric  for  sleepiness:
Sustained  wakefulness  causes  sleepiness  and  increases  homeostatic  sleep
drive.  Therefore,  the  achieved  result  was  not  validated  against  other
sleepiness metrics e.g. EEG, MSLT, and PVT. 
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The  results are based on data measured from eleven naval officers but the
repeatability was estimated only from five participants who were. Moreover,
the participants were trained professionals, who were highly motivated to do
their best in every situation and who were used to staying awake for long
periods  of  time.  Therefore,  a  limitation  of  this  thesis  is  the  small  and
homogeneous  participant  group.  Individual  variability  in  a  normal
population need to be studied.

A strength of the thesis is the prolonged wakefulness setup, which was
designed to preserve real life conditions. A decreasing trend of saccadic eye
movement was evident,  even though the participants were allowed to use
caffeine  and  tobacco,  stimulants  which  are  usually  prohibited  in  sleep
deprivation studies e.g. reviews [20, 162]. However, the setup allowed us to
examine eye movements for almost three 24 h-cycles of the circadian rhythm,
but the saccade task was measured only every six hours. Therefore, the effect
of  sampling rate (time between the eye movement measurements)  on the
confidence  limits  as  well  as  the  effect  of  individual  differences  in  the
circadian rhythm should be studied carefully.

VOLUNTARY CONTROL OF THE SACCADIC EYE MOVEMENTS
The saccade task requires cooperation from the person who takes the test. If
he/she refuses to execute the task or performs the task incorrectly (willfully
or not) the test result cannot be used to estimate prolonged time wake. In
this case, it matters little whether the measured and observed parameter is
under involuntary control. The saccade execution is under voluntary control,
however trying to achieve better performance by cheating in the saccade task
is difficult or even impossible under sleep deprivation: The person needs to
move her/his eyes every second when the stimulus appears for eight minutes.
Such  performance  requires  the  ability  to  maintain  sustained  attention,
something which is affected by sleep deprivation.

USABILITY OF THE METRICS
In this thesis the EOG signals were measured using a robust, medical device
certificated  to  record  physiological  signals  (e.g.  EEG,  electrocardiogram,
respiratory). However, the EOG signal could of course be measured using a
light ambulatory system, e.g Bittium Faros (Bittium, Oulu, Finland). These
portable systems make measurements outside the laboratory easy to carry
out e.g. [84]. New unobtrusive techniques for measuring EOG have emerged,
e.g. dry electrodes integrated into eyewear frames e.g. [175, 176] and in-ear
EOG [177]. Before large scale use, the reliability and usability of these new
EOG measurement techniques should be evaluated.

A strength of this thesis is that the feature extraction from the EOG signal
and the saccade task analysis method were executed with no need to calibrate
between  the  EOG  signal  and  eye  movements.  In  addition,  no  triggering
between the saccade task and the EOG signal was necessary. These features
make the metric practical and easy to use on site.
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9.5 FUTURE RESEARCH 

When developing new testers and biomarkers hindsight has a 20/20 vision.
While many of the presented results are encouraging there are still issues left
for future work. First more work is needed to study individual differences in
saccade task performance during acute sleep deprivation. The saccade task
performance varies between individuals (e.g. express saccade makers, [178])
as well as the ability to cope with sleep deprivation (reviews [2, 20, 179]).
Therefore,  optimizing or even individualizing the saccade task parameters
could potentially improve the sensitivity of the time awake estimator.

In real life sleep deprivation is seldom induced by prolonged wakefulness
but it is rather a cumulative partial sleep deprivation resulting from e.g. poor
night’s sleep, irregular working hours, jet lag etc. The performance deficit in
the saccade task should be studied systematically  in the same individuals
during sustained wakefulness and partial sleep deprivation (e.g. Van Dongen
et  al.  (2003) executed  such  a  systematic  comparison  for  PVT  [180]).
Moreover, in conditions where the sleep deprivation is partial or cumulative,
the  performance deficit  in the  saccade task should be  validated against  a
widely used sleepiness measurement technique (e.g. MSLT, EEG, or PVT) in
the laboratory.

New  unobtrusive  eye  movement  measurement  approaches  could  offer
solutions to make our metric easier to use and cost-effective for large scale
use. Our approach to analyze the saccade task and eye movement data is
simple,  robust,  and  requires  a  modest  sampling  rate  for  eye  movement
recordings. The eye movements could possibly be measured with a slow VOG
device (e.g. a tablet or a smartphone) or with a disposable in-the-ear EOG
[177].  Additionally,  the  saccade  task  could  be  presented  by  a  tablet  or  a
smartphone since no event by event analyses are required to estimate the
saccade task performance.  Moreover,  the eye movement signal  processing
could be lighter and faster (depending on the measurement method) since
only the occurrence of the saccades and blinks needs to be detected.

9.6 CONCLUSION

Prolonged time awake increases sleepiness. Increasing sleep drive induces
rapid  and  uncontrolled  sleep  initiation  leading  to  unstable  cognitive
performance,  which  is  comparable  to  alcohol  intoxication.  Even  though
sleepiness is a major identifiable and preventable cause of accidents, there is
no reliable on-site time awake tester comparable to a breathalyzer for blood
alcohol concentration.

This thesis presents an attempt to develop a time awake tester based on
eye movements derived from the electro-oculographic signal. The proposed
novel  metric  worked  on  individual  level  and  the  measurements  were
repeatable. Based on these results the proposed approach could be used as a
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time  awake  metric  outside  the  laboratory.  The  metric  needs  individual
calibration  before  the  time  awake  of  a  person  can  be  estimated.  More
research is needed to study individual differences, optimize the measurement
duration, and stimulus parameters.

In the future a time awake tester could provide a tool to penalize sleepy
driving and also prevent sleep related accidents. In addition, a time awake
tester could increase people's awareness of how prolonged time awake affects
one’s attentional functions and that way can help people to find a balance
between activity and rest. Applications for such a product range from safety
critical work, shift work, global work across time zones to everyday activities,
and health related problems.
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APPENDIX I

APPENDIX I

A  exponential  equation  has  been  used  to  describe  the  main  sequence
between amplitude and peak velocity (Equation A.1). 

(A1.1)       V m=V a(1−e [−A /C ])                                           

Here,  Vm = vectorial  peak velocity,  Va = asymptotic Vm,  value for large
saccade, A = saccade amplitude, and C = angular constant that determines
how fast Vm increases with saccade size [92]. 
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APPENDIX II

The performance of the algorithm was evaluated using the conventional
true positive  rates  (TPR,  sensitivity),  and positive  predictive  values  (PPV,
precision) (when the false positive (FP) values were available), defined as e.g.
[156] 

(A2.1) TPR=100
TP
N true

and 

(A2.2) PPV=100
TP

Nmethod

where  TP  indicates  the  number  of  true  positives  (correctly  identified
events) Ntrue is the total number of true events (TP + false negative (FN)), and
Nmethod is the total number of events detected by the method (TP + FP).
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