
9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

Aalto University publication series
SCIENCE + TECHNOLOGY 16/2014

REMES Final Report

The Finnish Work Environment Fund TSR Project
no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics

Aalto University publication series
SCIENCE + TECHNOLOGY 16/2014

© Ville Mäntyniemi, Rémi Mignot, and Vesa Välimäki

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)
http://urn.fi/URN:ISBN:978-952-60-5964-8

Unigrafia Oy
Helsinki 2014

Finland

This work was fund by The Finnish Work Environment Fund
(Työsuojelurahasto) Grant no. 113252

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Ville Mäntyniemi, Rémi Mignot, and Vesa Välimäki
Name of the publication
REMES Final Report
Publisher School of Electrical Engineering
Unit Department of Signal Processing and Acoustics

Series Aalto University publication series SCIENCE + TECHNOLOGY 16/2014

Field of research Audio signal processing

Abstract
This report summarizes the results of the REMES project, "Realistic Machine and

Environmental Sounds for a Training Simulator to Improve Safety at Work". Its aim is to
improve the sound environment in working machine simulators.

Modern simulators are visually and operationally extremely advanced and realistic, but the
sound environment is still limited. By improving the sounds in these simulators, the simulators
can grow into exceptionally realistic training tools with the ability to fully educate future
operators in a completely safe environment.

Existing sounds are improved and new sounds are created for three different simulator types:
a forest harvester and forwarder simulator, a drill rig simulator, and a truck-mounted hydraulic
platform simulator. The main sound types synthesized are hydraulic sounds, drilling sounds,
feeding and delimbing sounds (forest machines), and basic contact sounds.

Linear predictive coding is used throughout the project in synthesizing several different
sounds, including hydraulic sounds and harvester sounds. Spectral subtraction and non-
negative matrix factorisation are also widely utilized in creating noiseless contact sound
samples required in the forwarder simulator and noiseless drilling sound for the rig simulator.
Other methods used include filtering, amplitude envelope extraction, and peak detection.

Keywords acoustics, drilling, forestry machines, hydraulics, simulators

ISBN (printed) 978-952-60-5963-1 ISBN (pdf) 978-952-60-5964-8

ISSN-L 1799-4896 ISSN (printed) 1799-4896 ISSN (pdf) 1799-490X

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 4+102 urn http://urn.fi/URN:ISBN:978-952-60-5964-8

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Ville Mäntyniemi, Rémi Mignot, and Vesa Välimäki
Julkaisun nimi
REMES Final Report
Julkaisija Sähkötekniikan korkeakoulu
Yksikkö Signaalinkäsittelyn ja akustiikan laitos

Sarja Aalto University publication series SCIENCE + TECHNOLOGY 16/2014

Tutkimusala Audiosignaalinkäsittely

Tiivistelmä

Tämä raportti esittelee tulokset REMES-hankkeesta, jonka tavoitteena oli parantaa
työkonesimulaattoreiden ääniympäristöä.

Modernit simulaattorit ovat visuaalisesti ja ohjaustoiminnoiltaan erittäin kehittyneitä ja
todenmukaisia, mutta niiden ääniympäristö on varsin rajoittunut. Kun ääntä saadaan
parannettua, työkonesimulaattoreista tulee erittäin realistisia opetuslaitteita, joilla voidaan
täydellisesti kouluttaa tulevia operaattoreita turvalliseen työympäristöön.

Kolmen eri työkonesimulaattorin nykyisiä ääniä parannetaan ja laajennetaan: harvesteri- ja
kuormatraktorisimulaattori, poralaitteistosimulaattori ja autoalustaisen hydraulisen
nostolavan simulaattori. Keskeiset syntetoitavat äänityypit ovat hydrauliset, poraus-, syöttö-
ja karsimis- (harvesterissa) sekä kontaktiäänet.

Lineaariennustuskoodausta (LPC, Linear Predictive Coding) käytetään projektissa useiden
erilaisten äänten, kuten hydraulisten ja harvesteriäänten, tuottamiseen. Spektrivähennyksen
ja NMF-menetelmän (engl. Non-negative Matrix Factorization) avulla tuotetaan häiriöttömiä
kontaktiääninäytteitä kuormatraktorin simulaattoriin ja porausääniä poralaitteiston
simulaattoriin. Lisäksi käytetään muita menetelmiä, kuten suodatusta, amplitudiverhokäyrän
irrotusta ja huipun ilmaisua.

Avainsanat akustiikka, hydrauliikka, metsäkoneet, poraaminen, simulaattorit

ISBN (painettu) 978-952-60-5963-1 ISBN (pdf) 978-952-60-5964-8

ISSN-L 1799-4896 ISSN (painettu) 1799-4896 ISSN (pdf) 1799-490X

Julkaisupaikka Helsinki Painopaikka Helsinki Vuosi 2014

Sivumäärä 4+102 urn http://urn.fi/URN:ISBN:978-952-60-5964-8

Preface

This report documents the results of the REMES project (“Realistic Machine and

Environmental Sounds to Improve Safety at Work”). This work was conducted be-

tween February and October 2014. The REMES project continued the efforts of the

Audio Signal Processing Research Group of Aalto University to apply sound synthe-

sis methods to non-musical noises, which is a much younger field than music syn-

thesis. A large part of this report is based on Ville Mäntyniemi’s Master’s thesis,

which contains some extra information on listening tests conducted in the REMES

project. Dr. Rémi Mignot contributed significantly to the analysis and synthesis of

drilling sounds in which he successfully employed the non-negative matrix factoriza-

tion method. Rémi also worked hard during the final editing of this report.

The project researchers and I are grateful to the Finnish Work Environment Fund,

Creanex, and Sandvik Construction for supporting this research. Special thanks go

to Mr. Sami Oksanen, whose role during the planning of the REMES project was

essential.

Espoo, Thursday 23rd October 2014,

Vesa Välimäki

1

Preface

2

Contents

Preface 1

Contents 3

Abbreviations 7

1. Introduction 9

2. Background and Methods 13

2.1 Sound Synthesis . 13

2.1.1 Sampling and Wavetable Synthesis 13

2.1.2 Additive and Subtractive Synthesis 14

2.2 Linear Predictive Coding . 14

2.2.1 Basic Principle . 14

2.2.2 Linear Prediction . 15

2.2.3 Autocorrelation Method . 16

2.2.4 LPC Synthesis . 17

2.3 Filtering . 18

2.3.1 FIR-filter Design . 18

2.3.2 Sliding Average Filter . 19

2.3.3 Moog Filter . 20

2.3.4 State Variable Filter . 21

2.4 Spectral Subtraction . 22

2.4.1 Basic Principle . 22

2.4.2 Reducing Spectral Error . 23

2.5 Peak Detection . 24

3

Contents

3. Hydraulic Sounds 27

3.1 Machine Hydraulics . 27

3.2 Synthesis Method . 27

3.3 Synthesized Hydraulic Sounds . 28

3.3.1 Basic Hydraulic Sound . 28

3.3.2 Fading Hydraulic Sound . 28

3.3.3 High Frequency Hydraulic Sound 30

3.3.4 High Frequency Variable Hydraulic Sound 32

3.3.5 Hydraulic Piston Contact Sound 33

4. Harvester and Forwarder Sounds 37

4.1 The Machines . 37

4.2 Feeding Sound . 39

4.3 Delimbing Sound . 40

4.4 Contact Sounds . 45

4.4.1 Logs Hitting the Screen . 46

4.4.2 Logs Hitting the Bunks . 46

4.4.3 Grapple Opening . 46

4.5 Hydraulic Pump Sound . 47

4.6 Load Brake Sound . 48

5. Drilling Sound Synthesis 53

5.1 Background Noise Removal . 56

5.1.1 Non-negative Matrix Factorization 56

5.1.2 Quasi-Stationary Noise Removal Using NMF 58

5.1.3 Noiseless Drilling Sound Reconstruction 59

5.2 Drilling Sound Analysis/Synthesis . 60

5.2.1 Time-Envelope Estimation . 63

5.2.2 First estimation . 65

5.2.3 Second Click Detection . 66

5.2.4 Second Estimation of the Envelope Parameters 68

5.2.5 Last Click Detection . 69

5.2.6 Click Extraction . 69

5.2.7 Realistic Synthesis . 70

5.3 Software Package . 72

4

Contents

5.3.1 Annotation . 72

5.3.2 Analyzer . 73

5.3.3 Test and Parameter Refinement . 74

5.3.4 Drilling Data Exportation . 75

5.3.5 Real-Time Synthesis Library . 77

5.3.6 Demonstration Application . 84

6. Evaluation 89

6.1 Listening Test at Creanex . 89

6.1.1 Procedure . 89

6.1.2 Results and Improvements . 90

6.1.3 Feeding . 90

6.1.4 Feeding and Delimbing . 91

6.1.5 Hydraulic Sounds . 91

6.1.6 Hydraulic Pump . 91

6.1.7 Forwarder Contact Sounds . 92

6.1.8 Load Brake Sound . 92

6.2 Listening Test at Sandvik . 93

6.2.1 Procedure . 93

6.2.2 Normal Drilling . 93

6.2.3 Under Feeding . 95

6.2.4 Over Feeding . 95

6.2.5 Deep . 96

6.2.6 Bending . 96

6.2.7 Rattling (Closed) . 97

6.2.8 Rattling (Open) . 97

6.2.9 General Comments, Conclusion and Improvements 98

7. Conclusions and Future Work 99

Bibliography 101

5

Contents

6

Abbreviations

API Application Programming Interface

AR Autoreg-Ressive

ARMA Autoreg-Ressive Moving Average

CPU Central Processing Unit

FFT Fast Fourier Transform

FIR Finite Impulse Response

GUI Graphical User Interface

LP Linear Prediction

LPC Linear Predictive Coding

NMF Non-negative Matrix Factorization

MA Moving Average

MSE Mean Square Error

RPM Revolutions Per Minutes

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

7

Abbreviations

8

1. Introduction

Training simulators are rapidly becoming essential tools in the training of new ma-

chine operators. These simulators allow for a completely safe training environment,

where future operators can efficiently learn the essential operations, tasks, and haz-

ards. Ideally, a simulator-trained operator will be able to correctly and safely operate

an actual machine without prior real-life experience. To reach this goal, the simula-

tor environment must be as realistic as possible to minimize the transition between

the simulator and the machine, cf. e.g. [1].

Although modern simulators are already visually and operationally extremely re-

alistic and advanced (Fig. 1.1), the sound environment is still in need of considerable

improvement. Sounds play a crucial role in operating several machines: they give the

operator valuable information about the state of the machine, they inform of other

machines in the area, and they give audible cues which help in operating the ma-

chines. Essentially, with a realistic sound environment the operators can be trained

to distinguish defects in the machine, avoid hazardous situations, and operate the

machines with the help of both visual and aural aids. This method of training will

allow beginners to learn these aforementioned skills in a hazard-free environment

instead of an actual worksite with real machines and people. Although simulator

based sound synthesis work does exist relating to flight simulators (cf. e.g. [2] or [3]),

little to no research can be found regarding working machine simulators, excluding

drilling sounds [4].

This project has focused on improving the sound environment of three different

types of working machine simulators: a forestry harvester and forwarder simulator,

a drill rig simulator, and a truck mounted hydraulic platform simulator. The actual

machines in question are presented in Fig. 1.2. The method of improving the sounds

in these simulators will be to improve the existing sounds and to add completely new

9

Introduction

Figure 1.1. Working machine simulators: forest machine simulator (left) and drill rig simulator (right).
Pictures retrieved from www.creanex.com.

sounds which are currently missing, but necessary for a more realistic soundscape.

The current sound synthesis method used in the simulators is sampling synthesis

[5], with some basic processing such as pitch shifting and amplitude modulation.

Sampling synthesis will remain as the basis for the whole sound system, i.e. sound

files will be played back in the simulator when they are required, but other methods of

sound synthesis will be implemented to improve the authenticity of these sounds and

to add new sounds. Subtractive synthesis [5] will play a major role in synthesizing

several different sounds in this project, as one common method falling under this

category is Linear Predictive Coding (LPC) (cf. e.g. [6] or [7]), which is a vital tool

widely utilized in this project. Also the Non-negative Matrix Factorization is used for

drilling sounds, to remove the background noise.

The structure of this report is as follows. Section 2 begins with an introduction to

sound synthesis and the theory behind the methods used to synthesize the sounds

created in this project. Section 3 explains the synthesis process behind creating

hydraulic sounds, which were missing from the simulators completely. Hydraulic

sounds can be very prominent in the actual machines and they exist in both the

forestry machines and drill rigs, making them a vital part of this project. Section

4 deals with sound synthesis related to the forest machine simulators. Important

sounds synthesized in this section include, feeding, delimbing, and contact sounds.

Section 5 focuses on drilling sound synthesis, the most essential sound in a drill rig.

Although synthesis work based on physical models can be found related to drilling

sounds (cf. e.g. [4], or [8]), this work will focus on improving the existing sample

based drilling sound and not utilize the more advanced physical models. Section 6

10

Introduction

Figure 1.2. Top left: forest harvester, top right: forest forwarder, bottom left: truck mounted hy-
draulic platform, bottom right: drill rig. Pictures retrieved from www.ponsse.com,
www.miningandconstruction.sandvik.com, and www.bronto.fi.

presents the results of two listening tests regarding the hydraulic, forest simulator

sounds, and drilling sounds. The listening tests were carried out to obtain valuable

feedback and comments on the synthesized sounds to help further improve the sound

environment. Finally, Section 7 summarizes the project and discusses future works.

11

Introduction

12

2. Background and Methods

This section provides an introduction to sound synthesis and the theory behind the

methods used, they will be frequently mentioned in next sections 3 and 4. Never-

theless, because of the different approach used for the drilling sounds, some special

methods has been especially designed for them, and are described in Sec. 5.

2.1 Sound Synthesis

Today sound synthesis is generally divided into four different classes: processed

recordings, spectral models, physical models, and abstract algorithms [9]. This project

will focus mostly on synthesis in the processed recordings and spectral model classes.

Synthesis methods falling under these two categories will be explained in more detail

below.

2.1.1 Sampling and Wavetable Synthesis

As explained in [5], sampling and wavetable synthesis are currently the most popular

methods used in sound synthesis and they are both examples of processed recordings.

In sampling synthesis, recorded sounds are simply played back with or without pro-

cessing. An example of this is a digital piano, where recordings of different piano keys

being played are used to synthesize a piano sound. There are several recordings for

each key to simulate different attacks, which are needed to create a realistic sound-

ing digital piano. Sampling synthesis is the main method used in the simulators to

synthesize sound prior to the start of this project. Recorded machine sounds were

played backed in the simulators with some simple processing, including amplitude

variations and pitch shifting.

13

Background and Methods

In wavetable synthesis a single period of a sound waveform is stored into a table and

then repeated. For musical instruments it is common to store separate parts of the

sound. For example, the attack, sustain, and release segments of the wanted sound

can be stored separately and then played back when needed to create a more real-

istic synthesis result. Filters are typically used with wavetable synthesis to achieve

variation in sound through spectral control. In addition to this, samples may be pitch

shifted to a certain degree to allow for more flexibility. If a sample is pitch shifted too

much, it will start to sound unnatural. Instead several different samples with differ-

ent frequencies should be used and then pitch shifting should implemented between

these samples to obtain the required frequency. This method is called multisampling

and it can be used with sounds created in this project.

2.1.2 Additive and Subtractive Synthesis

Two examples of spectral modeling are additive and subtractive synthesis. Additive

synthesis is simply the method of combining several sine waves to create a sound. In

subtractive synthesis a spectrally rich waveform is filtered with a suitable filter to

achieve the required sound. The excitation signal is commonly white noise or an im-

pulse train and it is filtered with a filter which will shape the spectrum in a required

way. One common subtractive synthesis method is Linear Predictive Coding (LPC),

which can be used to extract the spectral shape of a signal and design a suitable filter

to model this spectrum. LPC is used extensively in this project, especially in synthe-

sizing hydraulic sounds. Linear predictive coding will be explained in more detail in

the next section.

2.2 Linear Predictive Coding

2.2.1 Basic Principle

Linear predictive coding is a common technique used in audio signal processing and

especially speech processing, cf. [6] and [7]. It is used to present the spectral char-

acteristics of a signal. LPC assumes signals to present a source-filter model, where

a source is excited by a linear filter, e.g. in speech processing the source is the vocal

cords and the filter models the vocal tract. The LPC filter models the spectral shape

14

Background and Methods

of the sound produced by the vocal tract and a white noise excitation can be used

to synthesize a speech signal. This is called LPC synthesis and it is widely utilized

in this project, although not for its most common application, speech processing, but

instead for machine sound synthesis. LPC synthesis will be explained later in more

detail.

A basic signal can be written as

S(z) = U(z)H(z), (2.1)

where z is the Z-transform variable and U(z) is the Z-transform of the excitation

signal un, which is filtered by the transfer function of the spectral shaping filter H(z),

which is an estimate of the spectral shape of the signal s(n). For continuous spectra,

the excitation U(z) is assumed to have a flat magnitude spectrum. In this project

white noise is almost exclusively used as the excitation signal.

There are three different cases of the LPC-model: the all-pole model (autoregressive

= AR model), the all-zero model (moving average = MA model), and the pole-zero

model (autoregressive moving average = ARMA model), cf. [7]. The all-pole model

is the most widely used and will be used exclusively in this project. In the all-pole

model, the signal s(n) is a linear combination of past values with an input un and

gain G

s(n) =

p∑
k=1

aks(n− k) +Gun. (2.2)

The transfer function of the all-pole model is given as

H(z) =
G

A(z)
=

G

1−
p∑

k=1

akz−k

. (2.3)

Linear prediction must be used to determine the predictor coefficients ak of the FIR

filter A(z), which is commonly known as the inverse filter.

2.2.2 Linear Prediction

Linear prediction is the method of predicting future samples by forming estimates

from linear combinations of previous samples. The linear predictor is shown in

Eq.(2.4), where ŝ(n) is the estimate, s(n − k) the previous sample, and ak the pre-

dictor coefficients. The amount of previous samples used for the linear prediction is

presented by p, which is the order of the inverse filter. The idea behind linear pre-

diction is to calculate the predictor coefficients ak, so that the difference between the

15

Background and Methods

estimate ŝ(n) and the actual sample s(n) is as small as possible [5].

ŝ(n) =

p∑
k=1

aks(n− k) (2.4)

The error of the estimate is the difference between the actual sample and the esti-

mate, which is also known as the residual

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

aks(n− k). (2.5)

In linear prediction, the predictor coefficients are obtained by minimizing the Mean

Square Error (MSE)

EMSE =
∑
n

e(n)2 =
∑
n

(
s(n)−

p∑
k=1

aks(n− k)

)2

(2.6)

by taking the derivative in relation to the predictor coefficients and setting it to zero

δE

δai
= 0, 1 ≤ i ≤ p (2.7)

Then we arrive at
p∑

k=1

ak
∑
n

s(n− k)s(n− i) =
∑
n

s(n)s(n− i), 1 ≤ i ≤ p. (2.8)

By expanding Eq.(2.6) and substituting Eq.(2.8), the minimum total squared error,

Ep, can be obtained

Ep =
∑
n

s2n +

p∑
k=1

ak
∑
n

snsn−k. (2.9)

After this step, there are two common choices for calculating the predictor coeffi-

cients: the autocorrelation method and the covariance method [7]. The autocorrela-

tion method is used in this project and is explained below.

2.2.3 Autocorrelation Method

In the autocorrelation method, the error in Eq.(2.6) is minimized within the bound-

aries −∞ < n < ∞ (in practice, windowing is applied), which reduces Eqs.(2.8) and

(2.9) to

R(i) =

p∑
k=1

akR(i− k), 1 ≤ i ≤ p (2.10)

and

Ep = R(0)−
p∑

k=1

akR(k). (2.11)

16

Background and Methods

The optimal LPC shown in Eq.(2.10) is presented below in matrix form⎡⎢⎢⎢⎢⎢⎢⎣
R(0) R(1) . . . R(p− 1)

R(1) R(0)
.

... . . . R(1)

R(p− 1) . . . R(1) R(0)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a1

a2
...

ap

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
R(1)

R(2)
...

R(p)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.12)

Because the left side of the matrix equation is a Toeplitz matrix (each descending

diagonal from left to right is constant), the predictor coefficients can be recursively

obtained using the Levinson-Durbin Algorithm [7]

E0 = R(0) (2.13)

ki =

⎡⎣R(i)−
i−1∑
j=1

a
(i−1)
j R(i− j)

⎤⎦/
Ei−1 (2.14)

a
(i)
i = ki (2.15)

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j , 1 ≤ j ≤ i− 1 (2.16)

Ei = (1− k2i)Ei−1. (2.17)

Equations (2.14) - (2.16) are recursively calculated with i = 1, 2, 3, ...p. From this

algorithm we can then obtain the optimal predictor coefficients for the inverse filter

A(z) = 1−
p∑

k=1

akz
−k. (2.18)

As presented in [7], the gain can be written as

G =
√
Ep =

√√√√R(0)−
p∑

k=1

akR(k) (2.19)

2.2.4 LPC Synthesis

Linear prediction can be considered as the process of dividing a signal into two parts:

the inverse filter A(z) and the residual e(n). The opposite process of this analysis

17

Background and Methods

method is LPC synthesis, where the original signal can be obtained by filtering the

residual with the inverse of A(z), also known as the LPC filter

S(z) = E(z)
1

A(z)
=

E(z)

1−
p∑

k=1

akz−k

. (2.20)

The LPC filter models the spectral shape of the signal and it can be effectively applied

in sound synthesis. Instead of filtering the residual of the original signal, a suitable

excitation signal is selected (usually white noise), which is then filtered with the LPC

filter. The output is a synthetic sound signal with the spectral qualities of the original

signal. Due to the noisy properties of the residual, replacing it with a synthesized

noise signal is a perceptually valid method. By using sufficiently large filter orders p

the difference between the signals may be inaudible.In addition, increasing the filter

order p greatly augments the detail of the spectral envelope, which is why high filter

orders (p = 1000) are preferred throughout this project. The LPC synthesis method is

applied throughout this project.

2.3 Filtering

Filtering is an essential tool in signal processing and audio signal processing, so it is

no surprise it is also widely practiced in this project. Basic FIR-filters (finite impulse

response filters) are applied throughout the project, including low-pass, band-pass,

band-stop, and high-pass filters [10]. In addition to these basic filters, Moog filters

[11] or [12], state variable filters, and sliding average filters [13] are also utilized in

the processing of certain sounds.

2.3.1 FIR-filter Design

The FIR-filters are designed using the classic window design method [14] with a

Kaiser window [15]. In the window design method, the specifications of the filter are

determined in the frequency domain by the wanted cutoff frequencies of the pass-

band and stopband and their corresponding maximum ripple values. The filter is

then designed to meet these specifications using a specific window function. If no

window function is used, i.e. the window is a rectangular window, there will always

be passband ripple, which can be observed in Fig. 2.1.

As seen in Fig. 2.1, passband ripple can be easily minimized by using a nonrectan-

18

Background and Methods

0 5 10 15
−100

−80

−60

−40

−20

0

20

Frequency [kHz]

Ma
gn

itu
de

 [d
B]

Rectangular

Hamming

Figure 2.1. Example spectrum of a band-pass filter with a passband of [5, 10] kHz using a rectangular
window and a Hamming window.

gular window, e.g. Hamming, Hanning, Chebyshev, or Kaiser window. In this case,

a Kaiser window will be implemented due to its flexibility in allowing the user to

control the width and levels of the main and side lobes. The Kaiser window is given

as

w(k) =

I0

[
β

√
1−

(
k−p
p

)2
]

I0(β)
, k = 0, 1, 2, ..., N − 1 and p = (N − 1)/2, (2.21)

where, I0 is the zeroth order modified Bessel function of the first kind, cf. [16]

I0(z) =

∞∑
k=0

(
1
4z

2
)k

(k!)2
(2.22)

The parameter β controls the ratio of the main lobe width and side lobe levels: as β

is increased, the main lobe width increases and the side lobe amplitudes decrease.

The optimal solution is to try to reduce the sidelobe amplitudes without increasing

the main lobe width too much [14]. Three different Kaiser windows are shown in Fig.

2.2. Note how there is no passband ripple and how increasing β affects the main and

side lobes.

2.3.2 Sliding Average Filter

The sliding average filter, also known as a moving average filter, is a very useful FIR

filter. The output of the filter is the average of a number of points determined by the

window size N

y(k) =
1

N

N−1∑
i=0

x(k − i). (2.23)

19

Background and Methods

0 5 10 15
−140

−120

−100

−80

−60

−40

−20

0

20

Frequency [kHz]

Ma
gn

itu
de

 [d
B]

β = 2

β = 4

β = 8

Figure 2.2. Three different Kaiser windows with different values of β with a passband of [5,10] kHz.

A whole set of data can be processed by sliding the window through the data, so that

an average will be calculated for each sample from N neighboring samples. This

process efficiently smooths out the data removing any short-time fluctuations and

emphasizing long-term changes. In signal processing, this process can be considered

low-pass filtering and it can be used to filter out noise or to extract the amplitude

envelope of a signal, cf. [13]. Amplitude envelope extraction is what the sliding

average filter will be used for in this project.

The amplitude envelope of a signal is extracted by first performing a full wave

rectification, after which it is filtered with the sliding average filter. The window

size N determines how much smoothing is applied to the signal, i.e. how accurately

all the valleys and peaks are featured. Increasing the window size increases the

smoothness of the amplitude envelope and less features of the original signal will be

present. Figure 2.3 presents the process explained above.

2.3.3 Moog Filter

The Moog filter is a time varying filter commonly used in musical applications such

as synthesizers, effects, and samplers. Originally published as a voltage-controlled

filter by Robert Moog in 1965 [11], the Moog filter has since been converted into a

non-linear digital implementation by Huovilainen [12], which included five nonlinear

functions inside the filter sections. A more efficient single nonlinearity version of the

digital Moog filter implementation is presented by Välimäki and Huovilainen in [17].

This version of the Moog filter implementation will be applied in the processing of

certain sounds during the project. Essentially, the filter is able to slide the cutoff

20

Background and Methods

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time [ms]

A
m

pl
itu

de

b)

Figure 2.3. a) Original signal and b) full-wave rectified signal with amplitude envelope in red.

frequency of a low-pass filter with a resonance from one frequency to another (Fig.

2.4). This feature is excellent for creating a sweeping-type sound effect, where the

frequency characteristics of a sound change in relation to time.

2.3.4 State Variable Filter

The state variable filter is a filter which provides three different outputs: low-pass,

high-pass, and band-pass. In addition to this, it allows for the independent control of

the cutoff frequency and damping factor. These features prove the filter suitable for

many musical applications. The difference equations of the three different outputs

are given in [18] as

yl(n) = F1yb(n) + yl(n− 1)

yb(n) = F1yh(n) + yb(n− 1)

yh(n) = x(n)− yl(n− 1)−Q1yb(n− 1),

where yl is the low-pass output, yb the band-pass output, and yh the high-pass out-

21

Background and Methods

Figure 2.4. Variable cutoff frequency of the lowpass-type Moog filter.

put. The tuning coefficients F1 and Q1 are given as

F1 = 2sin (πfc/fs) (2.24)

Q1 = 2ζ. (2.25)

where, fc and ζ are the tuning parameters and fs is the sampling frequency. In this

project the filter will be used as a variable bandpass filter, which can also be used to

create a wah-wah effect commonly used in guitar effects.

2.4 Spectral Subtraction

2.4.1 Basic Principle

Spectral subtraction is a method used for removing noise from a signal, cf. [19]. It is

an invaluable tool used in this project enabling the use of high quality sampling syn-

thesis. The idea behind spectral subtraction is to subtract the magnitude spectrum of

the noise from the noisy signal magnitude spectrum, leaving behind the spectrum of

the clean part of the signal. The noisy signal magnitude spectrum is calculated from

a segment of the signal with only noise present. The spectrum of the obtained clean

22

Background and Methods

signal can than be converted back to the time domain to generate a noiseless audio

signal. The steps behind this method will be explained in more detail below.

The noisy input signal is analyzed by taking half-overlapped windowed segments

of the signal. The noisy signal in the time domain is given as the sum of the clean

signal s(k) and the noise n(k)

x(k) = s(k) + n(k). (2.26)

Converting to the frequency domain using the Fourier transform gives

X(ejω) = S(ejω) +N(ejω), (2.27)

where j is the imaginary unit and w angular frequency defined as

ω = 2πf (2.28)

In practice, Short-Time Fourier Transform (STFT) is used to calculate the magnitude

spectra of sections of the signal as it changes over time, cf. [20].

The spectral subtraction estimator

Ŝ(ejω) =
[|X(ejω)| − μ(ejω)

]
ejθx(e

jω) (2.29)

is obtained by replacing the magnitude |N(ejω)| of N(ejω) with its average value

μ(ejω) (taken from only-noise part of signal) and the phase θN (ejω) of N(ejω) with

the phase θx(e
jω) of X(ejω). This estimate causes a spectral error given by

ε(ejω) = Ŝ(ejω)− S(ejω) = N(ejω)− μ(ejω)ejθx . (2.30)

2.4.2 Reducing Spectral Error

This spectral error causes unwanted audible changes in the signal and these effects

should be reduced in some manner. There are four different methods available for re-

ducing the effects of this error: magnitude averaging, half-wave rectification, residual

noise reduction, and additional signal attenuation during noise-only segments. The

spectral subtraction algorithm in this project will implement magnitude averaging

and residual noise reduction.

Magnitude averaging uses averaging of spectral magnitudes to reduce the spectral

error. |X(ejω)| is replaced with |X(ejω)| where

|X(ejω)| = 1

M

M−1∑
i=0

|Xi(e
jω)| (2.31)

23

Background and Methods

and Xi(e
jω) is the ith time-windowed transform of x(k). This gives

SA(e
jω) =

[
|X(ejω)| − μ(ejω)

]
ejθx(e

jω) (2.32)

modifying the spectral error

ε(ejω) = SA(e
jω)− S(ejω) ∼= |N | − μ. (2.33)

Residual noise can be observed as narrow bands of magnitude spikes randomly

placed. Transformed back into the time-domain, these random magnitude spikes

will cause unwanted sound effects and they should be removed. Residual noise is

reduced by

|Ŝi(e
jω)| = |Ŝi(e

jω)|, for |Ŝi(e
jω)| ≥ max|NR(e

jω)|
|Ŝi(e

jω)| = min
{
|Ŝj(e

jω)|j = i− 1, i, i+ 1
}
, for |Ŝi(e

jω)| < max|NR(e
jω)|

where max|NR(e
jω)| is the maximum value of the noise residual measured during

the noise-only segment of the signal. The maximum value of the noise residual is

measured using STFT over several time frames.

After the modified magnitude spectrum is obtained, the signal is then coverted back

to the time-domain using inverse FFT with the overlap-add method to form the new

clean output signal, cf. [19].

2.5 Peak Detection

Peak detection is the process of locating the local maxima or "peaks" of a signal. A

value in a signal is considered to be a peak when its amplitude is higher than that of

its neighbors. Peak detection is an important tool in signal processing, as the peaks

of a signal are often of interest [21]. In this project, a peak detection algorithm is

used which compares each signal value to its neighbors and concludes whether it is a

peak according to the following parameters:

– Minimum peak height: the minimum amplitude required to be considered a

peak

– Minimum peak separation: the minimum distance between peaks, any peaks

closer than the minimum distance to another peak will not be considered peaks

24

Background and Methods

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Am
pli

tud
e

Samples

Signal
Peaks

Figure 2.5. Peak detection used on a signal.

– Minimum height difference: the minimum difference in amplitude required be-

tween neighboring values to be considered a peak.

Often, it is required to perform filtering on a signal before peak detection can be a

viable option. Filtering is used to remove noise, as a noisy signal will easily lead to

false detection of peaks. A signal should not be smoothed out too greatly with filtering

though, as this can cause important and valid peaks to disappear [21]. An example

of peak detection is shown in Fig. 2.5.

25

Background and Methods

26

3. Hydraulic Sounds

3.1 Machine Hydraulics

One main component missing from the simulators was the sound of hydraulics in

the machines. Hydraulics are used in operating the boom and many other features

of the drill rig, harvester and forwarder and also to lift up the carriage on a truck-

mounted platform. As these sounds can be quite dominant in the actual machines,

it was required to come up with a way to synthesize these sounds for the simulators.

However, it should be noted that in the more modern drill rigs hydraulic sounds are

quite inaudible as the cabin is heavily sound proofed.

3.2 Synthesis Method

Linear predictive coding (LPC) was chosen as the most suitable method for synthesiz-

ing hydraulic sounds and the results were excellent. Using this method, synthesized

WAV files were created which could then be played back in the simulators in real-

time. LPC, as explained in Sec. 2.2, is used to extract the spectral envelope of the

original signal, which can then be used as a basis for sound synthesis. Using LPC, we

can calculate a filter corresponding to the spectrum of the original hydraulic sound

signal, which is then used to filter a white noise excitation resulting in a synthesized

hydraulic sound. In this case, extremely high filter orders were used (p = 1000), as

there was no need for real-time processing and these values achieved exceptional re-

sults. The lengths of the original hydraulic sound samples, from which the spectral

envelopes were extracted, ranged from 100 ms to 150 ms. An advantage to using this

27

Hydraulic Sounds

method is the possibility of synthesizing sound signals of arbitrary length, i.e. the

length of the white noise excitation determines the length of the synthesized signal.

This allows for the possibility of creating longer sounds, which can prove difficult if

only sample based synthesis is used due to the periodic sound caused by looping the

same short sample. In addition, by synthesizing several different samples with dif-

ferent white noise excitations, the signals will not cause a periodic sound even when

looped.

3.3 Synthesized Hydraulic Sounds

This section will cover the different types of hydraulic sounds that were synthesized.

All the original recording samples used for the basis of the synthesis are taken from a

longer reference recording. This main file is a minute long recording of the hydraulic

sounds in a drill rig presenting several different sound events possible in a hydraulic

system.

3.3.1 Basic Hydraulic Sound

The most basic and prominent hydraulic sound is the basic "hiss" sound, which can

be seen in Fig. 3.2 below. The LPC filter is calculated from a 100 ms portion of

the original hiss sound and then a white noise excitation is filtered with it. Figures

3.1 and 3.2 present the different stages of the synthesis of this sound: the spectral

envelope of the original signal calculated using LPC and the white noise excitation

signal in Fig. 3.1 and the time and frequency domain signals of the original and

synthetic signal in Fig. 3.2.

3.3.2 Fading Hydraulic Sound

The fading hydraulic sound is a sound which occurs as the hydraulic fluids stop flow-

ing within the system. This sound was synthesized first by using an LPC filter (cal-

culated from a 150 ms portion of the original signal) with an order of p = 1000 and a

white noise excitation to achieve the basic hydraulic sound. Figure 3.3 presents the

spectrum of the original signal, the LP-spectrum, the white noise excitation, and the

spectrum of the synthesized signal.

To simulate the sound of the hydraulic fluids stopping their flow, a Moog filter,

28

Hydraulic Sounds

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

Time [ms]

A
m

pl
itu

de

a)

0 2 4 6 8 10 12 14 16 18 20
−120

−100

−80

−60

−40

−20

0

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

b)

Figure 3.1. a) White noise excitation signal and b) spectrum of original signal in blue and LP spectrum
in red.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
a)

Time [ms]

A
m

pl
itu

de

0 5 10 15 20
−40

−20

0

20

40

60

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

b)

0 20 40 60 80 100
−1

−0.5

0

0.5

1
c)

Time [ms]

A
m

pl
itu

de

0 5 10 15 20
−40

−20

0

20

40

60

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.2. Time domain presentations and spectra of the a)b) original signal and c)d) synthetic signal.

explained in Sec. 2.3.3, was used to sweep a low-pass filter to a cutoff frequency

of 700 Hz with a logarithmic frequency envelope. In addition, a linear amplitude

envelope was used to fade out the sound level at the end of the sample. The basic

29

Hydraulic Sounds

0 5 10 15 20
−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

a)

0 5 10 15 20
−30

−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 0.05 0.1

−0.4

−0.2

0

0.2

0.4

0.6

Time [ms]

A
m

pl
itu

de

c)

0 5 10 15 20
−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.3. a) Spectrum of original signal, b) LP spectrum, c) white noise excitation, and d) spectrum
of synthesized signal.

hydraulic sound was multiplied with the amplitude envelope and the output of the

Moog filter was added to the end. The output of the Moog filter is the basic hydraulic

sound filtered by the Moog filter with a low pass filter sweep from 2200 Hz to 700 Hz.

The cutoff frequency envelope, the amplitude envelope, and the output of the Moog

filter are presented in Fig. 3.4.

3.3.3 High Frequency Hydraulic Sound

In addition to the basic hydraulic sound, a higher frequency sound was also required.

To achieve this, a high frequency hissing sound (100 ms) was first band-pass filtered

from a recording of actual hydraulic sounds. The high frequency hydraulic sound

could be heard in the frequency range of 4.5 to 8.5 kHz, thus a band-pass filter meet-

ing these specifications was implemented. The band-pass filter utilized a pass band

of 4.5 to 8.5 kHz and with transition bands at 4.4 to 4.5 kHz and 8.5 to 8.6 kHz. A

Kaiser-window, explained in Sec. 2.3.1, was used as the windowing function for the

design of the FIR digital filter, which can be seen in Fig. 3.5. The spectrum of the

original and filtered signal is presented in Fig. 3.6.

After obtaining the filtered output, linear predictive coding could again be used to

extract the spectral envelope of the required sound sample. LPC was used in the

30

Hydraulic Sounds

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time [ms]

A
m

pl
itu

de

a)

0 50 100 150
500

1000

1500

2000

2500

Time [ms]

Fr
eq

ue
nc

y
[H

z]

b)

0 50 100 150
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

c)

0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [ms]
A

m
pl

itu
de

d)

Figure 3.4. a) Amplitude envelope, b) cutoff frequency envelope, c) original hydraulic sound without
fade out, and d) Moog filter output.

0 5 10 15 20
−20000

−15000

−10000

−5000

0

5000

Frequency [kHz]

P
ha

se
 [d

eg
re

es
]

b)

0 5 10 15 20
−150

−100

−50

0

50

Frequency [kHz]

M
ag

ni
tu

de
 [d

b]

a)

Figure 3.5. a) Frequency response and b) phase response of the band-pass filter with pass band at
[4.5, 8.5] kHz.

exact same manner as with the basic hydraulic sound, i.e. filter order p = 1000 and

white noise as the excitation signal. Figure 3.7 presents the filtered spectrum, the

LP spectrum, the white noise excitation, and the spectrum of the synthesized signal.

31

Hydraulic Sounds

0 2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

a)

0 2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

Figure 3.6. Spectrum of a) the original signal and b) band-passed signal.

0 5 10 15 20
−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

a)

0 5 10 15 20
−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 20 40 60 80 100

−0.4

−0.2

0

0.2

0.4

0.6

Time [ms]

A
m

pl
itu

de

c)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.7. a) Spectrum of original signal, b) LP spectrum, c) white noise excitation, and d) spectrum
of synthesized signal.

3.3.4 High Frequency Variable Hydraulic Sound

The high frequency variable hydraulic sound is a synthesized sound used to try and

imitate the sound of the hydraulic fluids trying to squeeze through the system. The

32

Hydraulic Sounds

sound is a high frequency sound which varies in frequency, causing a squealing like

sound. The sound is synthesized from the synthesized output of the high frequency

hydraulic sound presented in the previous section, by further filtering it with a state

variable filter, which is commonly known for the "wah wah" effect used in guitar

effects. This filter alters the band-pass of the filter higher and lower in frequency,

causing a high frequency "wah wah" effect as seen in the spectrogram in Fig. 3.8.

Figure 3.8. Spectrogram of the high frequency variable sound.

3.3.5 Hydraulic Piston Contact Sound

The hydraulic system also consists of contact sounds or "thump" sounds caused by the

pistons of the machine. These sounds were also synthesized using linear predictive

coding with a filter order of p = 1000, but instead of a white noise excitation, a simple

impulse was utilized. Using LPC to create synthetic versions of the sounds allowed

for noiseless samples, as the original signals contained some background noise. Sev-

eral different LPC-filters were calculated from different contact sound samples from

the recordings and the same impulse excitation was filtered with all filters. The im-

pulse excitation and the spectra of the LPC filters can be seen in Fig. 3.9. Each

synthesized sample differed from each other due to the different LPC filters, allow-

ing for a varying pallet of contact sound samples. The time and frequency domain

33

Hydraulic Sounds

presentations of these synthesized samples can be seen in Figs. 3.10, 3.11, and 3.12.

The original and synthetic signals differ slightly in the time-domain, but perceptu-

ally the signals sound very similar, which can be noticed in the similarity between

the original and synthetic spectra.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time [ms]

A
m

pl
itu

de

a)

0 5 10 15 20
−80

−60

−40

−20

0

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

b)

0 5 10 15 20
−120

−100

−80

−60

−40

−20

0

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

c)

0 5 10 15 20
−100

−80

−60

−40

−20

0

A
m

pl
itu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.9. Impulse excitation in a) and the original spectrums (blue) and LP spectrums (red) of b)
thump 1 c) thump 2 d) thump 3.

As can be seen in Figs. 3.10, 3.11, and 3.12 above, most of the energy in the spectra

is concentrated around the lower frequencies. The spectra of the original and syn-

thetic contact sounds are presented between 0 to 4 kHz in Fig. 3.13 below, allowing

for a more detailed comparison of the spectral characteristics.

34

Hydraulic Sounds

0 50 100
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

a)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 50 100
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

c)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.10. Thump 1: The original signal presented in a) the time domain and b) frequency domain.
The synthesized signal presented in c) the time domain and d) frequency domain.

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

a)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

c)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.11. Thump 2: The original signal presented in a) the time domain and b) frequency domain.
The synthesized signal presented in c) the time domain and d) frequency domain.

35

Hydraulic Sounds

0 20 40 60
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

a)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 20 40 60
−1

−0.5

0

0.5

1

Time [ms]

A
m

pl
itu

de

c)

0 5 10 15 20
−60

−40

−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

Figure 3.12. Thump 3: The original signal presented in a) the time domain and b) frequency domain.
The synthesized signal presented in c) the time domain and d) frequency domain.

0 1 2 3 4
−20

0

20

40

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

a)

0 1 2 3 4
−20

0

20

40

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

b)

0 1 2 3 4
−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

c)

0 1 2 3 4
−20

0

20

40

60

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

d)

0 1 2 3 4
−20

0

20

40

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

e)

0 1 2 3 4
−20

0

20

40

M
ag

ni
tu

de
 [d

B
]

Frequency [kHz]

f)

Figure 3.13. Spectra of a) thump 1 original signal, b) thump 1 synthetic signal, c) thump 2 original
signal, d) thump 2 synthetic signal, e) thump 3 original signal, and f) thump 3 synthetic
signal.

36

4. Harvester and Forwarder Sounds

One main focus of this project was the synthesis of typical sounds found in two im-

portant forest machines: the harvester and forwarder. Among the required sounds

for the simulator for these machines were: feeding, delimbing, several different types

of contact sounds, and hydraulic sounds which were already explained in Sec. 3.

4.1 The Machines

The harvester and forwarder are typically used together in forestry: the harvester is

used to cut down trees and delimb them and the forwarder is used to transport the

logs from the forest. In addition to the increased speed and effectiveness these ma-

chines bring to logging, they also provide a safer work environment as the operators

are stationed safely inside a protected driving cabin, away from the dangers of falling

trees and motorsaws.

A modern forest harvester can be seen in Fig. 4.1. The machine typically consists

of a cabin, a diesel engine, wheels or tracks, an extendable boom, and a harvester

head. The diesel engine is used to power the vehicle and the boom combined with

the harvester head through a hydraulic system. The combination of a powerful diesel

engine and heavy duty wheels or tracks make forest machines mobile and robust on

terrains of all kinds. The boom is used to move around the harvester head, which

consists of the tools required for felling and delimbing trees. The average harvester

head employs a chain saw for cutting the tree, delimbing knives used for removing

branches, and feed rollers for moving the tree through the harvester head. The last

two parts of the harvester head are mostly of interest in this project as they are the

cause of two important sound events: feeding and delimbing.

37

Harvester and Forwarder Sounds

Figure 4.1. A forest harvester. Retreived from www.ponsse.com

A forest forwarder is presented in Fig. 4.2. Similar to the harvester, it also con-

sists of a cabin, diesel engine, wheels or tracks, and an extendable boom. Instead

of a harvester head, the forwarder employs a grapple at the end of the boom. The

grapple is used to grab various amounts of logs and move them on and off the car-

riage. The grapple also contains a load brake, which is used to prevent the grapple

from swinging too drastically. The carriage is used to store and transport the logs on

the machine. The carriage consists of the bunks (vertical poles at the side) and the

screen (the back of the carriage). The grapple, logs, bunks, screen, load brake, and

hydraulics are the cause of the sounds which will be analyzed later below.

Figure 4.2. A forest forwarder. Retreived from www.ponsse.com.

38

Harvester and Forwarder Sounds

4.2 Feeding Sound

Feeding is the process of moving a tree trunk through the harvester head. Moving

the log allows for it to be sawed at desired positions and also to allow the delimbing

knives to remove branches from the log. The feeding sound is caused by feeding a

section of the log with no branches through the harvester head. The sound is the

noise of the feed rollers scraping against the bark of the tree.

A video of a forest harvester at work was used as the starting point for the synthesis

of a feeding sound. A segment of audio containing a feeding event was extracted from

the video and analyzed and processed for the final synthesis steps. The extracted

sound sample contained a fair amount of background noise, including engine and

wind noise, and thus spectral subtraction, presented in Sec. 2.4, was required to

achieve a cleaner sample. Even after spectral subtraction, some engine noise was still

present in the sample which would adversely affect the quality of the synthesis. To

attenuate the effect of the engine noise, two FIR filters (Sec. 2.3.1) were implemented:

1. A low-pass filter with a cutoff frequency at 8 kHz and a filter order of 99

2. A band-stop filter (notch filter) with a stopband at 500-600 Hz and a filter order

of 1970

The low-pass filter was used to remove some of the high frequency components caused

by the diesel engine of the harvester. Next, the notch filter was implemented to

remove a very distinct and loud squealing sound between 500-600 Hz. The effects

of filtering the original sound sample with these two FIR filters can be seen in the

spectrograms shown in Fig. 4.3.

By implementing spectral subtraction and filtering with the two aforementioned

FIR-filters, the sound sample was clean enough to be used as a reference sample for

the synthesis. An LPC filter was calculated from the filtered sound sample with a

filter order of p = 1000. As explained in Sec. 2.2, the LPC filter contains the spectral

characteristics of the original signal. A white noise excitation signal was filtered with

the LPC filter leading to a purely synthetic signal with the same spectral envelope as

the original signal.

The next step in the synthesis was to correctly model the amplitude envelope of

the original signal which is presented in Fig. 4.4. This was achieved with full wave

rectification and a sliding average filter using the method explained in Sec. 2.3.2.

39

Harvester and Forwarder Sounds

Figure 4.3. Spectrograms of a) original signal (spectral subtraction implemented) b) filtered signal.

A window size of N = 200 was used for the sliding average filter. The achieved

amplitude envelope was then multiplied with the output of the LPC synthesis and

as a result, a purely synthetic signal was obtained with the correct amplitude and

frequency characteristics.

The time domain presentations and spectrograms of the original and synthetic sig-

nals can be observed in Fig. 4.5. Both signals look fairly similar in both the time

domain and frequency domain, implying a successful synthetic result.

4.3 Delimbing Sound

The delimbing sound is closely related to the feeding sound presented above. The

sound is caused by branches being cut by the delimbing knives in the harvester head

as the log is being fed through it. So essentially, there will also always be a feeding

40

Harvester and Forwarder Sounds

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

A
m

pl
itu

de

Original signal (full−wave rectified)
Amplitude envelope

Figure 4.4. Time-domain presentation of the full-wave rectified original signal and the amplitude en-
velope calculated using a sliding average filter.

sound underneath the delimbing sound, as feeding is required for delimbing to take

place. The approach chosen to synthesize the sound of a delimbing event was to

create audio samples of branches being cut and combine them with the previously

synthesized feeding sound. This allows for two separate types of sounds which can

then be easily combined or played separately depending on the situation as the log is

being fed through the harvester head:

1. No branches on the log ⇒ feeding sound only

2. Branches on the log ⇒ feeding and delimbing sound combined

The sound of branches breaking was synthesized in the same fashion as the feeding

sound itself. A real-life sound sample of a branch breaking was used as a basis for the

synthesis process. First, the LPC filter modeling the spectral content was calculated

from this sound sample using a filter order of p = 1000. This filter was then used to

filter a white noise excitation, resulting in a noise-like signal with the correct spec-

tral characteristics. Next, full-wave rectification and a sliding average filter with a

window size of N = 100 were utilized to obtain the amplitude envelope of the original

41

Harvester and Forwarder Sounds

Figure 4.5. Time domain presentations and spectrograms of the a)b) original and c)d) synthetic feeding
sound.

signal, cf. Fig. 4.6. Lastly, the resulting spectral envelope and amplitude envelope

were multiplied to obtain a synthetic sound sample, cf. Fig. 4.7.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

A
m

pl
itu

de

Original signal (full−wave rectified)
Amplitude envelope

Figure 4.6. Time domain presentation of the original full-wave rectified signal of a branch breaking
sound and its amplitude envelope (red).

42

Harvester and Forwarder Sounds

Figure 4.7. Time domain presentations and spectrograms of the a)b) original branch breaking sound
and c)d) the synthetic signal created from it.

Several different real-life branch sounds were used to synthesize different versions

of branch-breaking sounds adding variation and realism to the final combined sound

of feeding and delimbing. Different synthetic branch-breaking sounds were chosen at

random and spaced according to the peaks of the amplitude envelope of a real-life de-

limbing sound. The location of the peaks and their amplitudes were calculated using

peak detection as explained in Sec. 2.5. A minimum peak height of 0.4 and a min-

imum peak separation of 1400 samples were used for the peak detection algorithm.

The minimum height difference was set to zero. The detected peaks are shown in Fig.

4.8 below. Figure 4.9 presents a sample of several different delimbing sounds and the

combination of the feeding and delimbing sound in the time domain.

43

Harvester and Forwarder Sounds

0 1 2 3 4 5 6 7 8

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
m

pl
itu

de

Samples

Signal
Peaks

Figure 4.8. Peak detection of the amplitude envelope of a real delimbing sound.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

−0.5

0

0.5

1
a)

A
m

pl
itu

de

Time [s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

−0.5

0

0.5

1
b)

A
m

pl
itu

de

Time [s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

−0.5

0

0.5

1
c)

A
m

pl
itu

de

Time [s]

Figure 4.9. Time domain presentations of a) synthetic feeding sound only, b) delimbing samples, and
c) feeding and delimbing combined.

44

Harvester and Forwarder Sounds

4.4 Contact Sounds

The work related to the sounds of the forwarder simulator was mostly based on con-

tact sounds, i.e. sounds caused by logs or parts of the machine making contact with

the forwarder. Basic contact sounds consisted of: logs hitting the screen, logs hitting

the bunks, and motion of the grapple opening and stopping. These aforementioned

sound events are a fundamental part of the soundscape for a forest forwarder opera-

tor, and as such are required in the simulator. For example, the sound of logs hitting

the screen is caused by the operator as the logs are deliberately struck against the

screen to ensure they are as far back on the carriage as possible. Hearing this sound

notifies the operator of the position of the logs.

The sound samples of the events described below were extracted from a video of a

forest forwarder at work. The sound samples are quite short, but consist of heavy

background noise caused by the diesel engine and strong gusts of wind. Spectral

subtraction was used to remove the excess noise, resulting in clean sound samples,

cf. Sec. 2.4. In other words, no actual synthesis was required for the contact sounds,

as the processed sound samples were already of good enough quality.

Figure 4.10. Time domain presentations and spectrograms of a)b) a noisy sample and c)d) a clean
sample of the sound of logs hitting the screen.

45

Harvester and Forwarder Sounds

4.4.1 Logs Hitting the Screen

As explained above, the sound of the logs hitting the screen gives vital information

to the operator, and is thus a very important sound to have in the simulator. Fig-

ure 4.10 presents the original and processed sound samples of this event. As can be

noticed from both the time domain and spectrogram presentations, there is signifi-

cantly less noise present in the processed sound samples. This is especially evident

in the spectrogram, where only the sound of interest is amplified and everything else

is attenuated.

4.4.2 Logs Hitting the Bunks

The sound of the logs hitting the bunks is also a common event while using the for-

warder. The bunks hold the logs on the carriage from both sides and contact with

them is inevitable. The ringing-like sound of the bunks gives the operator important

cues about the position of the grapple and logs, a valuable aid compared to visual

observation only. Recognizing this sound already in the simulator phase of training

can help future operators be well prepared for use of the actual machine. As with

the screen contact sound, spectral subtraction succeeds in removing the background

noise from the bunk contact sound sample, as is apparent in Fig. 4.11. Both the

time domain and spectrograms of the processed signal show a significant decrease in

noise.

4.4.3 Grapple Opening

The grapples is the key component in the forwarder which allows it to operate as it

does. It is as vital to the forwarder as the harvester head is to the harvester. The

grapple is a claw-like tool which is used to grab and release logs, so they can be lifted

off the ground and onto the forwarder (and vice versa). The opening of the grapple

causes a sound event which should be very familiar to experienced operators. In

addition to the opening itself, an additional sound is heard as the grapple reaches

its maximum opened position. Although the opening of the grapple might not be

considered a contact sound, there is still some contact in the grapple as it reaches

its maximum. Again, spectral subtraction is successful in removing the background

noise from the noisy sample. Figure 4.12 shows the noisy and noiseless signals in the

time domain and their corresponding spectrograms.

46

Harvester and Forwarder Sounds

Figure 4.11. Time domain presentations and spectrograms of a)b) a noisy sample and c)d) a clean
sample of the sound of logs hitting the bunks.

4.5 Hydraulic Pump Sound

The hydraulic pump sound is a high frequency whistle-like sound found in the har-

vester. It is quite audible right before and after sawing, feeding, or delimbing and it

is caused by the hydraulics of the machine. The sound can quite easily be mistaken

for the sound of the turbo which is also a similar high frequency whistle, although at

a higher frequency. The hydraulic pump sound can be heard in the range of 8.6 kHz

to 10.5 kHz as seen in Fig. 4.13. The sound is visible in the spectrogram as a slim

darker descending line in the aforementioned frequency range.

The sound of the hydraulic pump was synthesized by first implementing a FIR

band-pass filter at 8.6 - 10.5 kHz. This filtered output was used as the input for an

LPC filter (order, p = 1000), which was then used to filter a white noise excitation, as

was done with other hydraulic sounds explained in Sec. 3. To add some variation in

frequency to the synthetic version, a variable state filter was utilized, cf. 2.3.4. The

state variable filter alters the band-pass of the filter, causing the frequency to de-

crease and increase. Figure 4.14 presents the different steps of the synthetic process.

Although in the synthetic version the behavior of the darker line does not exactly

replicate that of the original signal, it still sounds perceptually very similar.

47

Harvester and Forwarder Sounds

Figure 4.12. Time domain presentations and spectrograms of a)b) a noisy sample and c)d) a clean
sample of the sound of logs the grapple opening and stopping.

4.6 Load Brake Sound

The load brake is a hinge-type component connecting the grapple to the boom of the

forwarder. As its name implies, it operates as a brake preventing the grapple from

swinging too violently as the boom is shifted around. The sound of the load brake

can serve as an audible cue to the operator informing of too abrupt and reckless

movements. This is why the sound of a load brake could serve as a valuable asset

in a simulator, enabling the trainee to properly distinguish proper boom movements

though audio cues via the load brake sound.

The sound of the load brake is practically inaudible in the forwarder videos used

in previous sections of this chapter, thus a more vague approach had to be utilized

for the synthesis. According to experts working with the simulator and machines,

the sound is similar to a squeaky bicycle saddle, thus a sound clip of a bicycle saddle

squeaking was used as the source material and basis for the synthesis.

The sound was synthesized in the same manner as the feeding sound. First, LPC

(p = 1000) was used to calculate the spectral characteristics of the original sound

which was then used to filter a white noise excitation. Next, the original signal was

full-wave rectified in the time domain and it was filtered with a sliding average filter

48

Harvester and Forwarder Sounds

Figure 4.13. Spectrogram of the hydraulic pump sound. The sound itself is the dark red line around
8.6 kHz - 10.5 kHz.

with a window size N = 200, cf. Fig. 4.15.

The LPC filtered excitation signal was then multiplied with the amplitude envelope

to achieve the final synthetic result which is presented in Fig. 4.16. Even though the

reference sound sample is not an actual load brake sound, the spectrograms and time

domain presentations clearly show how the synthetic version resembles the reference

sound. By applying this method to an actual load brake sound, the result would be of

much higher quality.

49

Harvester and Forwarder Sounds

Figure 4.14. Spectrograms of the different synthesis steps. a) the original signal, b) the band-pass
filtered signal, c) the synthetic signal filtered with a state variable filter.

50

Harvester and Forwarder Sounds

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

A
m

pl
itu

de

Figure 4.15. Time domain presentation of the original full-wave rectified signal and its amplitude en-
velope (red).

Figure 4.16. Time domain presentations and spectrograms of the a)b) original signal and c)d) synthetic
signal.

51

Harvester and Forwarder Sounds

52

5. Drilling Sound Synthesis

Drilling sounds, which are obviously an essential part of any drill rig simulator,

mostly consists of the sound of the rock drill. The main component of the rock drill

is the piston, which converts the hydraulic energy into mechanical energy to actually

cause a drilling motion in the system. The boom of a drill rig holds several extra rods,

which are connected together to form drill strings connected to the rock drill allowing

it to dig deep into the ground [22]. Although this project will not go into more detail

about the specifications and types of rock drills and drill rigs, it is worth mentioning

that the drilling sounds analyzed in this project are from percussive hydraulic rock

drills. More information about rock drills can be found in [22]. The drilling machine

is illustrated in figs. 5.1 and 5.2.

The rock drill and its rods cause five main sound types typically found in drilling

situations:

1. Normal drilling: the typical drilling sound which should be heard when drilling.

2. Underfeed: feeding is the method of pushing the drilling tool against the rock.

In an underfeed situation, the drill is not pushed hard enough against the rock

and the sound can be easily distinguished from normal drilling by experienced

drill rig operators.

3. Overfeed: overfeeding is caused by pushing the drill too hard against the rock.

This causes a slight variation in sound compared to normal drilling, but com-

pared to underfeeding, it is not as easily recognizable even to experienced oper-

ators.

4. Rattling (threads closed): rattling is the sound of the rods being removed from

the rod string. The rods are shook heavily to open the threads holding the

53

Drilling Sound Synthesis

rods together. In this situation the threads are still closed causing a clearly

distinguishable sound.

5. Rattling (threads open): the sound of rattling when the threads finally open is a

very short but extremely loud and high frequency sound event, which is clearly

different compared to rattling with the threads still closed.

Additionally, not only the sound may depend on the nature of the rock, but also the

number of rods and the deep of the drilling. Note that, the rod string may bend in

rare situations, and if this phenomenon happens, the operator must detect it and stop

the drilling.

According to the purpose of the project, which is about the safety at work, the re-

alistic sound synthesis is a requirement of this work. Indeed, if the operators are

already experienced with drilling sounds before using a “real” drilling machine, they

will be able to detect abnormal drilling situations and to avoid breakage of material

in real situation, and eventually an accident. Then, the rig simulator is a useful tool

for the training of the use of the machines, but also to learn the sounds. For that, the

drilling sound synthesizer must be able to reproduce all possible drilling situations,

mentioned above, with a high sound quality.

Figure 5.1. Drilling machine of Sandvik. Picture retrieved from the web site:
http://construction.sandvik.com

The aim of this part of the project is the analysis of the recorded drilling sounds

and the realistic synthesis, together with a very low-cost real-time computation, and

54

Drilling Sound Synthesis

Figure 5.2. Drilling system of the machine. Picture retrieved from the web site:
http://construction.sandvik.com

a flexible method which allows the change of some parameters such as the drilling

frequency, number of impacts per second.

To achieve this, several recordings of drilling sounds were available, around 600

sound files, for almost all mentioned drilling situations. Most of these recordings are

given with a document which provides some information: type of drilling, number of

rods, ... Note that in most of the recordings, some different drilling situations are

successively present.

Then, because of the very high number of drilling sounds, we decided to develop an

automatic analysis of all available sounds. The derived algorithm must be as robust

as possible for all drilling situations, and it must not need manual intervention.

First in sec. 5.1 the background noise of the recording is removed in order to only

keep the drilling sound of interest. This noise usually corresponds to the diesel en-

gine. Then, all the analysis steps of the procedure are described in sec. 5.2 and the

simple synthesis computation is explained. Finally, in sec. 5.3, we describe the de-

livered software package. The developed programs allow to annotate the recordings,

analyze the annotated parts, test and modify the results, export the computed data

to real-time data, and compute the real-time synthesis.

55

Drilling Sound Synthesis

5.1 Background Noise Removal

All the available recordings of drilling sounds are corrupted by an inherent back-

ground noise coming from the diesel engine or the hydraulic system. Because of the

really different natures of this background noise and the drilling sound of interest,

it is not possible to simultaneously analyze and synthesize them as a unique entity.

Moreover, we are here only concerned by the drilling sound, first because the diesel

engine, which is the most dominant background noise, is efficiently reproduced by

the current version of the rig simulator, and second because the hydraulic sounds are

considered in sec. 3.

To analyze and synthesize a noiseless sound which is originally noisy, some ap-

proaches are possible. First, when the sound of interest can be relevantly modeled,

and if the analysis is robust to noise, it is possible to reconstruct the noiseless sound,

directly from the analysis, cf. e.g. [23]. In our case, it seems really difficult to define

a fine modeling of the drilling sound, which is compatible with a low-cost and flexible

synthesis. Second, using an estimation of the spectrum of the background noise, it is

possible in many cases to apply an adaptive spectral subtraction to remove the back-

ground noise and to extract the noiseless sound of interest, cf. e.g. [19] or sec. 2.4.

Unfortunately, this assumes that the noise spectrum is constant in time, but in our

case it slowly changes because of the moving engine speed, RPM (Revolutions Per

Minutes), for instance.

In this work, we propose an approach which only assumes a quasi-stationary back-

ground noise, which may slowly change in time, and a given Signal-to-Noise Ratio

(SNR). Not only this hypothesis is well adapted to our noise, but the drilling sound

has radically different properties, which may provide an efficient extraction of drilling

sounds. The analysis is based on the Non-negative Matrix Factorization which is

briefly described in next section.

5.1.1 Non-negative Matrix Factorization

For audio applications, the Non-negative Matrix Factorization (NMF) is used to ap-

proximate the matrix of the magnitude spectrogram, cf. e.g. [24, 25]. Using a Short-

Time Fourier Transform (STFT), cf. e.g. [18], the (M×N) spectrogram matrix V = |X|
represents the N successive “instantaneous” magnitude spectra of the sound, which

are given by its columns with M frequencies. Using this time-frequency representa-

56

Drilling Sound Synthesis

tion, we know the variation in time of the frequency components.

In this case, the Non-negative Matrix Factorization consists in the approximation

of the (M×N) matrix V , which has only non-negative elements, into the product WH

as follows:

V ≈ WH ⇐⇒ Vm,n ≈
K∑
k=1

Wm,kHk,n, (5.1)

where W is a (M × K) matrix and H is a (K × N) matrix. The dimension K of the

factorization is chosen much smaller than M and N , i.e. K 	 M and N .

Consequently, the Non-negative Matrix Factorization models the columns of V as

a weighted sum of the columns of W . As a first conclusion, W is considered as the

frequency dictionary giving the basis with size K on which the spectrogram V is

decomposed. And since the kth row of the matrix H gives the time-varying weight

of the kth word of W , column k, the matrix H is considered as the matrix of the

time-activation. Figure 5.3 illustrates these remarks.

Figure 5.3. Illustration of the Non-negative Matrix Factorization.

Basically, the algorithm of this factorization consists in the minimization of a “dis-

tance” between the original spectrogram V and its approximation Ṽ = WH. A stan-

dard choice is the Euclidean distance De(V ||Ṽ) =
∑

m,n(Vm,n − Ṽm,n)
2. Nevertheless,

with NMF, it is more common to use the generalized Kullbach-Leibler divergence, cf.

e.g. [26], because it is better adapted for sparse representations. This divergence is:

Dkl(V ||Ṽ) =
∑
m,n

(
Vm,n log

Vm,n

Ṽm,n

+ Vm,n − Ṽm,n

)
. (5.2)

Remark that this divergence is not symmetrical, Dkl(V ||Ṽ)
= Dkl(Ṽ ||V), that’s why

we speak about “divergence” and not distance.

The solving of this minimization problem is based on the iterative Newton algo-

rithm, cf. e.g. [27]. Starting from initial non-negative matrices W and H, usually

randomly chosen, the matrices W and H are successively and iteratively updated

57

Drilling Sound Synthesis

using the following lines:

H ← H ⊗
[
W T

(
V
 (

WH
))]
 (

W TU
)

(5.3)

W ← W ⊗
[(

V
 (
WH

))
HT

]

 (

UHT
)

(5.4)

where ← denotes the assignment statement, .T the matrix transpose, ⊗ the array

product (element-wize product, noted .∗ with Matlab e.g.),
 the array division (element-

wize), and U is the (M×N) matrix with 1 everywhere. Remark that there is no matrix

inversion, so the computation of these lines is fast, especially using dedicated matrix

computation as with the Matlab software.

We do not give any detail about the calculus which lead to this computation, we

refer the interesting reader to [26] e.g. for more details.

5.1.2 Quasi-Stationary Noise Removal Using NMF

As said previously, the value Hk,n of the activation matrix gives the contribution of

the kth column of W at the time index n. Then, if the kth row of H slowly varies

in time, the contribution of the kth word of W also varies slowly. To remove the

background noise assuming that it is quasi-stationary, the basic idea of our approach

is to constrain some rows of H to vary slowly.

Let’s define Kn the size of the noise basis, the modified NMF algorithm for the

background noise removal consists in adding a “smoothing” operation of the Kn first

rows of H after every update eq. (5.3). As a result, this new iterative algorithm will

implicitly learn the noise basis, which is stored in the corresponding Kn first columns

of W . At the same time, since the properties of the drilling sound are opposite, this

process also learns the sound basis, which is stored in the remaining K − Kn other

columns of W .

The smoothing operation of the first rows of H only consists in a linear filtering

with a very low cutoff frequency fc. For example, if fc = 2 Hz, the obtained noise is

authorized to vary only twice a second. In the same time, if Kn = 2, in principle this

method tries to extract a slowly time-varying noise, by modeling it as a moving mix

of two different noises.

Nevertheless, as such, this approach does not succeed to remove the background

noise, because at convergence, the gain of the corresponding rows of H are too low,

and the whole spectrogram V is actually modeled by the other K−Kn words. To solve

this problem we add a second constraint: choosing the value σ of the Signal-to-Noise

58

Drilling Sound Synthesis

Ratio (SNR), which is the ratio between the energy of the signal, drilling sound, and

the energy of the background noise, we artificially modify the gains such that this

ratio is checked, and without modifying the total energy.

Let’s define the energy operator E{X} =
∑

m,nX
2
m,n for all (M × N) matrices, and

let’s define Vn and Vs the spectrogram of the noise and the signal respectively. Then,

Vn = WnHn and Vs = WsHs with Wn and Ws the signal and the noise dictionaries,

[Wn,Ws] = W ; and Hn and Hs the corresponding activation matrices, [HT
n , H

T
s] = HT .

The additional constraints are then:

E{Vs}+ E{Vn} = E{V }, (5.5)

E{Vs} / E{Vn} = σ. (5.6)

With αn = E{V }/(E{Vn}(σ + 1)) and αs = αnσE{Vn}/E{Vs}, the previous con-

straints are verified by assigning

Hn ← αnHn and Hs ← αsHs (5.7)

after every update equations eqs. (5.3) and (5.4).

Note that additionally, the columns of W are normalized at every iteration, but this

normalization does not affect the modeling because the rows of H are divided by the

norms. With λk =
∑

mW 2
m,k, the �2 norms of the columns of W , and λ = [λ1, λ2, . . . λK],

we apply the assignments: W ← W diag (λ) and H ← diag (λ)−1H, after every updates

(5.4).

Because it may be difficult to know the “real” SNR of the input noisy sound, it

seems to be interesting to release the SNR adjustment eq. (5.7). For that, first the it-

erative algorithm is computed with Q1 iterations where both constraints are applied,

smoothing and gain adjustment, then Q2 additional iterations are computed with

only the smoothing. Consequently, during the Q1 first iterations, the noise dictionary

is learned by forcing the SNR, then the algorithm continues from this solution and

converges to a close solution, with a possible different SNR.

5.1.3 Noiseless Drilling Sound Reconstruction

With the obtained approximation of the magnitude spectrogram Ṽ = WH, and with

the phase matrix Φ = ∠X of the original spectrogram, it is possible to reconstruct the

time signal with the inverse Short-Term Fourier Transform of X̃ = Ṽ ⊗ejΦ. Then, the

derivation of the estimated noiseless drilling sound, y, follows the same principle: the

59

Drilling Sound Synthesis

inverse Short-Term Fourier Transform of Y = Vn ⊗ ejΦ = (WnHn)⊗ ejΦ is computed.

This corresponds to a source separation where the drilling sound of interest and the

background noise are considered as two distinct sources.

Note that the phase of the noiseless signal is not estimated with NMF, only its

magnitude is approximated, that’s the reason why the phase Φ of the noisy input

spectrogram is used. Because this phase contains also the contribution of the back-

ground noise, this reconstruction may provide some artifacts. Nevertheless, we must

notice that at the time/frequency points where the signal is dominant in magnitude,

the corresponding phase is mainly produced by the signal itself. On the contrary,

when the signal is dominated by the noise, the used phase is the phase of the noise,

but in this case the frequency component is usually masked by the neighbor signal

components with higher magnitudes. Consequently, even if the reconstruction is not

perfect, it is usually satisfying from the perceptual point of view, especially with the

drilling sound which are spectrally rich.

It is also possible to reconstruct the background noise using the same principle. But

first, this operation has a poor quality because of a frame rate effect, and second this

noise does not interest us.

For the project we used the following parameters: first the sampling rate Fs is forced

by the recordings that Creanex and Sandvik gave to us, and it was around 48000 Hz.

The Short-Term Fourier Transform is computed using a Hann sliding window with

size 1024 samples and a fine hop size of 128 samples. The bilateral spectra with

size 2048 are reduced to consider only the unilateral spectrogram corresponding the

frequency range [0, Fs/2], then M = 1025 bins. The NMF dimension is K = 82, and the

chosen noise dimension is Kn = 2, using the cutoff frequency fc = 2 Hz. During the

Q1 = 100 first iterations, the SNR has been constrained to 1 (0dB), and the algorithm

continues with Q2 = 100 other iterations.

5.2 Drilling Sound Analysis/Synthesis

Having the denoised drilling sounds, the new challenging task is to analyze them in

order to synthesize them using a realistic and very low-cost method, but also with

the possibility to change the frequency and other parameters.

The previous drilling sound synthesis of the drill rig simulator was used as the

basis for the new synthesis method. The drilling sound was created by simply looping

60

Drilling Sound Synthesis

Figure 5.4. Illustration of the NMF based denoising. Here an original noiseless drilling sound is syn-
thesized, and is given by the spectrogram S. Then a colored noise is added to produce the
input noisy sound with spectrogram V . The method is computed, which provides the esti-
mated denoised spectrogram Vs = WsHs, which must be as close to S as possible, and the
resulting noise matrix Vn = WnHn. As expected, the rows of Hn vary slowly, and the rows
of Hs vary faster.

61

Drilling Sound Synthesis

a wave-file of four single synthetic strikes from a rock drill, which will henceforth be

referred to as clicks. The drilling frequency was changed using pitch shifting, which

reduces the time between clicks as wanted, but also modify the frequency component

of the individual clicks. Optimally, as in real-life, increasing the drilling frequency

should only cause the reduction of the time between clicks.

To create a synthetic drilling sound which varies the distance between clicks accord-

ing to the drilling frequency, single clicks have to be first extracted from the original

denoised sounds. The next step was to create a function which repeats a single click

at the required frequency. By doing this, drilling sound samples of any given fre-

quency could be correctly synthesized by just changing the distance between single

click sounds; and to add variance in the drilling sounds, the single clicks are chosen

at random each time from all the possible click samples.

Nevertheless, the clicks are different according to the situation (normal drilling,

underfeed, overfeed, rattling, etc.), and also according the number of used rods and

the type of the drilled rock. Because we have more than one thousand annotated

sounds, it is not possible to manually extract a collection of clicks for each sound.

Figure 5.5 shows an example of drilling sounds, and it illustrates the difficulty to

detect and to extract the clicks. Moreover, in most cases the single clicks overlap

with the following ones. Then, in this part we propose a method to automatically

extract a collection of some clicks for each sound, with a duration possibly longer

than the time separating two clicks, by removing the contribution of the neighbor

clicks.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−1

−0.5

0

0.5

1

Time [samples]

Figure 5.5. Example of a denoised drilling sound. About 34 clicks occur in this sample with duration 1
second.

In this section, first we give some tools for the time-envelope estimation of the

drilling sounds, and then all steps of the analysis are successively described.

62

Drilling Sound Synthesis

5.2.1 Time-Envelope Estimation

Integrated Energy To detect the click positions in time and their amplitudes, we

define here a smooth time function based on energy integration.

With xn the denoised drilling sound, wn a finite weighting window with size 2N +1,

we define the smooth energy function en as follow:

en =

N∑
j=−N

x2n+jw
2
j (5.8)

Note that the sliding window wn can be defined for n < 0, and it is not necessarily

symmetrical.

This energy function has the property to efficiently smooth the signal and to raise

the clicks as obvious maxima. Then it will be easier to detect the click occurrences by

analyzing the peaks of en than analyzing the peaks of xn. This function is similar to

eq. (2.23) of sec. 2.3.2, but is more efficient for drilling sounds. Remark that as seen

below, the window shape wn is an important feature in the click detection, and it will

be refined later.

Whitening At first look, as such the energy function en has obvious peaks which

directly correspond to the click occurrences, but has also many local maxima which do

not correspond to a click. Moreover, in some cases it is difficult to distinguish a “false”

local maximum from a “true” click occurrence when the click has a low amplitude.

For this reason, the original denoised drilling sound is whitened by filtering it by

the inverse filter obtained by a linear prediction. The well-known Linear Prediction

Coding (LPC), cf. [7], provides an Autoregressive filter H(z) = 1/A(z), with a fre-

quency response which is an estimate of the spectral envelope of the analyzed signal,

as seen in sec. 2.2. Then, we compute the LPC filter from the signal xn and we filter

it by the FIR filter A(z). This operation provides a deconvoluted signal yn which has

a flat spectral envelope. We speak about “whitening”.

Instead of computing the energy function en with the signal xn, we propose here to

analyze its white version yn. This inverse filtering has the property to remove the

minimal phase part, and in some cases, it concentrates the energy of a single click

at its beginning. This remark is not strictly true because of the remaining phase

contribution which continues to spread the energy, nevertheless, as shown in fig. 5.6,

the energy function en is significantly smoother with the white signal, and most of

“false” maxima left, which will limit the number of wrong detections.

63

Drilling Sound Synthesis

In practice, first the average spectrum X is computed by the mean of the rows of

the spectrogram Vs, cf. sec. 5.1.1. Then the autocorrelation sequence ρn is computed

using the inverse Fourier transform of |X|2, and the LPC filter H(z) = 1/A(z) is

computed using the Levinson algorithm, cf. [7]. Finally, the white signal is computed

by filtering xn by A(z). Here the chosen LPC order is 1024, which is quite high and

provides an expensive filter, but this process is computed off-line during the analysis

only.

2.8 3 3.2 3.4 3.6 3.8 4

x 10
4Time [samples]

x2
n (rescaled squared signal)

en (estimated energy function)
Position of detected clicks

2.8 3 3.2 3.4 3.6 3.8 4

x 10
4Time [samples]

y2n (rescaled squared signal)
en (estimated energy function)
Position of detected clicks

Figure 5.6. Illustration of the time energy function estimation and click detection, using the original
signal xn (top figure) and its white version yn (bottom figure). In this example, the weighted
window is a symmetrical Hann window with size 2N + 1 = 1023. Remark the three false
detections with xn, which do not occur with yn.

Modeling the time-envelope of clicks The single clicks are modeled as the product

of an unknown signal, possibly stochastic and different for every click, and of an

envelope which is the same for all clicks. We here propose to model this envelope

using as few parameters as possible.

The envelope of a single click is modeled using an Attack/Decay model. The enve-

lope is separated into two parts:

• The increasing attack with length Na and parameter αa. Its formula ∀n ∈ [0, Na]

is

an =
n

Na
, if αa = 0,

1− e−αan

1− e−αaNa
, otherwise. (5.9)

Note that this envelope increases from 0 at n = 0 to 1 at n = Na. An example of

this behavior is shown in fig. 5.7.

64

Drilling Sound Synthesis

• The decreasing decay part has an exponential behavior with αd the positive

damping factor:

an = e−(n−Na)αd , ∀n ≥ Na. (5.10)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Decay part
Attack part with αa < 0
Attack part with αa > 0
Attack part with αa = 0

Figure 5.7. Illustration of an individual click envelope with different values of the attack factor. Here
the attack time is 200 samples.

In the following sections, the full procedure for the click detection and the envelope

estimation is described.

5.2.2 First estimation

First click detection: Based on the estimated energy function computed with the

white signal yn, and with a Hann weighting window with length 1023 samples, a

first click detection is done by picking up the local maxima of en. Also, in order to

know the limits of the clicks, the estimated click position are associated to the pair

of local minima on the left and on the right. Then, for all detected clicks, we have:

the positions Pm of the peak, Pl and Pr of the closest minimum on the left and on the

right respectively.

First estimation of the envelope parameters: The previous size of the window is cho-

sen to eliminate enough wrong local maxima and so to improve the click detection.

But the obtained energy function is too smooth to make possible a good parameter

estimation. Then a new energy function e′n is computed with a smaller window with

size 511 samples and the envelope parameters αa, Na and αd are estimated by match-

ing the modeled envelope an to the square root of the energy function, ν(n) =
√
e′n,

on all time ranges [Pl, Pr], for all detected clicks, cf. fig. 5.8.

• Na: the attack time is computed as the median value of all Pm − Pl, for all

detected clicks.

65

Drilling Sound Synthesis

• αd: the estimation of the decay factor is straightforward. Using all the values

ν(Pm) and ν(Pr), for all clicks, all αa are obtained solving

ν(Pr) = e−αd(Pr−Pm) ν(Pm) ⇔ αd =
−1

(Pr − Pm)
log

ν(Pr)

ν(Pm)
,

and the unique estimated value is the mean of all computed values.

• αa: the estimation of the attack factor is not easy because it is not possible to

isolate it from eq. (5.9); we use an iterative procedure to solve the problem. With

Pl/2 = (Pm+Pl)/2 the middle point between Pm and Pl, the obtained attack must

join the minimum point in Pl and the maximum point in Pm passing through the

middle point in Pl/2, which means that the following equation must be solved:

ν(Pl/2) = a(Pl/2 − Pl) ν(Pm).

This solving iterative procedure is based on the simplex method, cf. [28].

5 5.05 5.1 5.15 5.2 5.25

x 10
4Time [samples]

|xn|
νn (smooth function

√
e′n)

Pl (left limit)
Pl/2 (middle point)
Pm (position of the center)
Pr (right limit)

Pl

Pl/2

Pm

Pr

an (estimated envelope

Figure 5.8. Illustration of the first parameter estimation. Here the parameters Na, αa and αd are
estimated such that the envelope of the individual click passes through the 4 drawn points.
Remark that the fitting is not perfect in this example, because the estimation also takes
into account the other clicks.

5.2.3 Second Click Detection

In the previous section, the click detection and the envelope modeling were based on

the calculus of the energy functions en and e′n. Unfortunately, this click detection is

highly biased, because of the used window wn which is a Hann window. For example,

this window is symmetrical, and because the envelope of the clicks is not symmetri-

cal, the maximum of en is delayed and cannot be at the central position of the click,

it is usually delayed to the right, cf. e.g. fig. 2.3.

But, having a coherent estimation of the click envelope an we can significantly re-

duce this bias by replacing the Hann window by the click envelope itself. Then a new

66

Drilling Sound Synthesis

refined energy function en is computed using wn = an, and again, the click positions

in time are detected using the local maxima of en.

Indeed, if the (denoised) white signal yn is the product of a stationary signal un

with variance σ2, and an envelope signal gn which consists in a succession of click

envelopes an, i.e. gn =
∑

i βian−Pi with Pi the time position of the ith click and βi its

amplitude, the energy function is written

en =

N∑
j=−N

y2n+ja
2
n =

N∑
j=−N

u2n+j

(∑
i

βian+j−Pi

)2
a2j

=

N∑
j=−N

u2n+j

(∑
i

βiajan+j−Pi

)2
, (5.11)

and since an ≥ 0, the function
(∑

i βiajan+j−Pi

)2 has local maxima at n = Pi, the true

click positions, and also en because here un is assumed to be stationary.

Nevertheless, this operation does not provide a good solution because of some rea-

sons, and we need to add some limitations. First, as explained below, the first param-

eter estimation of the previous section is also biased, and usually the decay factor is

over-estimated, then wn is defined using the envelope an with a decay factor αd half

than the estimated value. Second, the size of the window wn = an is chosen to be half

of the mean distance of the detected clicks in the previous section. This limitation

reduces the influence of neighbor clicks, and improves the resolution. Third, the new

energy function en has a lot of “false” local minima. Then the search of the “good”

local maxima is done by searching the absolute maxima of the new en over the time

ranges: [Pl − Na, Pm − Na], where Pl, Pr and Na are the minima positions and the

attack time estimated previously. Here the ranges are delayed by Na, because now

the maxima does not give the center of the click, but its beginning in principle.

If no maximum is found in a selected range, then we assume that there is no corre-

sponding click, and the range is deleted. Among the obtained maxima, which are the

click positions Pc corresponding to the refined estimation of the beginning of all click

occurrences, we also delete some of them such that the minimal distance between

two neighboring detected clicks is smaller than half of the median. The choice of the

detections to delete depends on the positions themselves and also on the amplitudes

ePc .

67

Drilling Sound Synthesis

5.2.4 Second Estimation of the Envelope Parameters

Having the refined click positions Pc, with less false detections, we now can also refine

the estimation of the envelope parameters Na, αa, and αd. However, the estimation

of the previous section, based on a fitting of some points of the energy function e′n,

was also biased. Indeed, even with small sliding window wn, the energy function e′n
does not follow the envelope an. Here we propose a more accurate approach. Remark

that the previous method makes sense because this new one does not work with an

inaccurate detection of click position, which was the case previously.

Because only 3 parameters have to be optimized, we here propose to compute an

iterative algorithm for the solving of a non-linear optimization problem. The chosen

algorithm is based on the simplex method, cf. [28] and is implemented in Matlab as

the standard function fminseach(). This algorithm is convenient in our case because

of the small number of parameters and because of the complex criterion to minimize.

With a good estimation of the envelope an, dividing the signal yn by the combined

envelope gn =
∑

i βian−Pi , with Pi the new refined position and βi =
√

e(Pi) its am-

plitude, the obtained signal zn should have an envelope as flat as possible. Then the

criterion to minimize is based on the flatness of the energy function fn computed with

zn. Consequently, from the three parameter values, the criterion C is computed as

follows:

• The envelope an of an individual click is computed using eqs. (5.9) and (5.10),

for all an ≥ 0. Note that an = 0 for n < 0.

• The “combined” envelope gn is computed: gn =
∑

i βian−Pi .

• The signal zn is computed as follows: zn = yn/gn. To avoid the division by 0, the

signal before the first detected click is removed.

• The energy function fn is computed with zn and a Hann sliding window wn with

size 1024 samples: fn =
∑N

j=−N z2n+jw
2
j .

• The flatness is now tested by computed the square sum of the difference be-

tween fn and its mean. If zn is flat, fn is close to a constant function and the

following criterion is small:

C =

N∑
n=0

(
1

N

N−1∑
i=0

fi − fn

)2

68

Drilling Sound Synthesis

With this definition of the criterion, the simplex algorithm [28] provides the param-

eter values which minimize C.

Remark 1: the shape of the wn is not important here because the energy function

is not used to detect clicks or to estimate parameters, but it is just an intermediary

function to test the flatness of the envelope of zn.

Remark 2: the simplex algorithm tests a lot of different set of parameters, to find

the minimum. Then to accelerate the computation, the energy function is calculated

using an FFT (Fast Fourier Transform) and a product in the frequency domain rather

than a cross-correlation computation which is much more consuming here.

5.2.5 Last Click Detection

Again, with the refined envelope parameters we can obtain a refined detection of click

positions, and their corresponding amplitudes as in sec. 5.2.3. But now, because the

estimation of αd is not biased, its value is not divided by 2.

Because the new click position Pc are refined, we could imagine to make an iterative

process to refine again the envelope parameters, and so on. But in the most favorable

cases, the improvements are insignificant, and in the worst cases, the process may be

unstable, and may provide worst results. Then, the estimation of the click position

Pc, their corresponding amplitude βc, and the envelope parameters Na, αa and αd

stops here.

5.2.6 Click Extraction

With all detected values Pc and βc for all clicks, and the envelope parameters Na,

αa and αd, this section explains how a collection of some click is extracted from the

denoised signal xn. The total number of detected clicks is denoted Cd, and the number

of extracted clicks is denoted Ce. Basically, Cd ≈ 70 for 2 seconds of signals with

a frequency of 35 clicks per second, and the chosen number of extracted clicks is

Ce = 10.

The chosen extracted clicks must check the following constraints: first, to reduce

the overlap of the next neighbor clicks, the distance between Pc and Pc+1 must be as

high as possible. Second, to reduce the contribution of neighbor clicks, on the left and

on the right, its amplitude βc must be higher than βc−1 and βc+1. Then, all the Cd

clicks are sorted according to these criteria, and the Ce preferred clicks are selected

69

Drilling Sound Synthesis

for extraction.

In a first step, the signal yn is flattened, as in sec. 5.2.4. The flat signal zn is obtained

by the division of yn by the new “combined” envelope

g′n = max
i∈[1,Cd]

(
βian−Pi

)
.

Note that here we use the “max” operator instead of the sum operator. The use of

the max avoids the “cumulation” of the tails of the envelopes, whereas the use of the

sum favors this cumulation. In section 5.2.4, this effect is used to limit the value of

αd during the optimization, and now it is preferable to limit this effect.

As a result, the signal zn is flat, which means that the effect of the click envelope is

canceled, as shown in the middle sub-figure of fig. 5.9.

Now to extract an individual click with a damping tail which overlaps with the

following clicks, we just have to multiply the flat signal zn by the envelope an of

an individual click, cf. the bottom sub-figure of fig. 5.9. In this way, neither the

contribution of the tail of the previous click is removed, and nor the signal of the

following one, in a strict sense. But the contribution of neighbor clicks is efficiently

removed for the following reasons: first, thanks to the simultaneous masking, the

extracted click of interest efficiently masks the tail of the previous one because its

envelope is smaller. Second, the amplitude of the following one is efficiently reduced

and thanks to the temporal masking, its contribution is not audible in most of the

cases.

Finally, since the clicks are associated with the white signal yn, then we cancel this

whitening by filtering the extracted click samples by the LPC filter H(z) = 1/A(z),

cf. sec. 5.2.1. Moreover, since the extracted clicks have different amplitudes, they are

normalized to a unique norm.

5.2.7 Realistic Synthesis

The synthesis only consists in playing the Ce extracted clicks with a random selection

and with a quasi-constant frequency. However, to provide a more realistic synthesis,

it is needed to add a fluctuation in frequency and in amplitude.

First the mean period T0 in samples of the click occurrences is computed as the

mean of the distances of detected clicks:

T0 =
1

Cd − 1

Cd−1∑
c=1

Pc+1 − Pc,

70

Drilling Sound Synthesis

2.1 2.2 2.3 2.4 2.5 2.6 2.7

x 10
4Time [samples]

Original signal: yn

Combined envelope: gn

2.1 2.2 2.3 2.4 2.5 2.6 2.7

x 10
4Time [samples]

Flat signal: zn
Flat envelope

2.1 2.2 2.3 2.4 2.5 2.6 2.7

x 10
4Time [samples]

Extracted click: znan
Individual click envelope: an
Previous signal: yn
Previous combined envelope: gn

Figure 5.9. Illustration of the click extraction, based on the flattening of the drilling sound. In the top
figure, the original signal yn is shown together with its estimated combined envelope gn,
produced by all detected clicks. In the middle figure, the flattened signal zn = yn/gn is
illustrated. Finally, the bottom figure illustrates the extraction of an individual click by
the product of the flat signal zn and the modeled envelope an of the click. Note that, at
the center of the clicks, the signal is absolutely unchanged, then the percussive nature of
the click is conserved; and note that the following click which overlaps with the tail of the
wanted click, is efficiently reduced, which makes it imperceptible.

and the mean frequency is then F0 = Fs/T0. Also, to take account of the variance

of the click position, the fluctuation in term of frequencies, the standard deviation is

computed as follows:

σT =

(
1

Cd − 1

Cd−1∑
c=1

(
Pc+1 − Pc − T0

)2) 1
2

Second, in the same way the mean amplitude B and its standard deviation are com-

puted:

B =
1

Cd − 1

Cd−1∑
c=1

βi

σB =

(
1

Cd − 1

Cd−1∑
c=1

(
βi −A

)2) 1
2

Then, the amplitude of the played clicks are chosen according a Gaussian distribu-

tion centered at B and with the variance σ2
B, and the distances between the clicks

71

Drilling Sound Synthesis

are chosen with a Gaussian distribution centered at T0, in respect to the mean fre-

quency F0 in Hz, and the variance σ2
T . This procedure provides some fluctuations in

the amplitudes and the positions which makes the synthesis more realistic.

The selection of the click, among the Ce extracted clicks, is done randomly, but

it need to follow some constraints: first, the consecutive repetition of two identical

clicks makes the sound synthetic, then for every new click, the selection forbids to

select the previously played. Second, in the case where the original signal is long,

the timbre of the clicks may change. Then if two consecutive clicks have too different

timbres, the synthesis sound may have a rough aspect. To avoid this, the original

position of the extracted clicks is stored, and a slowly varying time point, phase,

periodically moves between the first and the last positions. Each time a new click

must be played, we choose the click among the 5 closest clicks to this point. This

guaranteed to consecutively select clicks which have similar timbres. The cycle of

this point has a duration of 4 seconds approximately, but has also a random behavior

in order to reduce the perception of looping.

5.3 Software Package

This sub-section describes all developed softwares which will be useful further anal-

yses, and especially to implement the real-time synthesis on a rig simulator. The

analysis part is developed using the software Matlab, and the real-time synthesis

part in C++ language. To facilitate the edition, most of the softwares are Graphical

User Interfaces (GUIs).

Note that, even if the C++ synthesis has been developed in a way to facilitate its

integration into the simulator, some additional tasks are needed to make a completely

safe integration. It is mainly designed to help developers.

5.3.1 Annotation

Because most of the recordings contain some different successive drilling situations

(normal drilling, overfeed, rattling, ...), it is necessary to annotate the limits of each

part for each sound. The automatic annotation is difficult, and it is not the subject

of this work. Moreover, a bad annotation may provide a worse analysis. Then a

Graphical User Interface has been developed in Matlab to annotate easily and quickly

all the sounds.

72

Drilling Sound Synthesis

First, receiving the name of a directory which contains all the recording files, this

software makes the complete list of sounds, and successively prints the signals in a

window, cf. fig. 5.10. Then, the user can listen the sound and annotate it by manually

placing some markers to delimit all different drilling parts contained in the file. To

make these operations faster, the software is especially designed to reduce the num-

ber of actions. For example, the left mouse button is used to add a new part, to stretch

an existing part or to merge two different parts; the right button is used to remove,

to reduce or to cut a part; the middle button is used to move the printed signal or

to zoom in or to zoom out. Also the key “space” is used to listen the sound from the

current position of the cursor, and using the modifier key “control” it is possible to

listen only the selected part. Finally, the key “e” allows to switch to the next sound,

and the key “s” allows to save the annotations in a file. Some other tools are also

available and their list is given pressing the key “h”.

Remark that to facilitate the analysis, the user has to choose parts as long as pos-

sible and as stable as possible, which means that the timbre of the sound may be the

same from the beginning to the end.

Figure 5.10. Screenshot of the annotator software. In this example, 4 parts are annotated with differ-
ent colors. Note that the first part corresponds to a normal drilling sound, and the 3 other
correspond to 3 different rattling sounds.

5.3.2 Analyzer

The analyzer is a software which computes the analysis of all annotated parts. There

is no manual intervention, except one question at the beginning in order to know

what sounds must be analyzed.

73

Drilling Sound Synthesis

First, the software makes the list of all annotated files, and also a list of all previ-

ously analyzed files. The user has the choice to (re)analyze all annotated files, only

the newly annotated files, or just the files of a sub-directory. At the moment of the

end of the project, 1296 parts are annotated, and the complete analysis lasts approx-

imately 7 hours, using a 4 core CPU at 3.20 GHz. All steps of sec. 5.2 are computed

successively for all annotated parts. Note that to make this process faster, the length

of the parts are limited by 2 seconds. Finally, all analyzed parameters, such as the

extracted clicks, the envelope parameters Na, αa and αd, and the statistical parame-

ters, F0, σT , B and σB, are stored into some Matlab data files. Figure 5.11 shows the

printed text during the analysis.

Figure 5.11. Printed text of the analyzer.

5.3.3 Test and Parameter Refinement

To check and eventually modify the analyzed parameters, another GUI has been

developed using Matlab, cf. fig. 5.12.

This software loads the analyzed drilling data, computed by the analyzer, and pro-

poses to compare the original noisy sound, the denoised drilling sound and the syn-

thesis. Also, some sliders and editor controls allow to modify the synthesis parame-

ters, and eventually to save the results in the data file.

The interface is decomposed as follows: the “Choose File” panel allows to select the

sound, directory and file name, and the annotated part. The “Listen” panel allows to

select the original, the denoised and the synthesized sound for listening. It can mod-

ify the global volume and activate or stop the playback. The “Parameters” panel is

74

Drilling Sound Synthesis

for the manual edition of all parameters. All the 7 parameters are plotted there: fre-

quency F0, amplitude B, deviation position σT , deviation amplitude σB, attack time

Na, attack damping αa, and decay damping αd. Finally, the “curves” panel illustrates

the clicks distribution and the modeled envelope an; and the bottom window shows

the annotated parts of the current file.

Figure 5.12. Screenshot of the Graphical User Interface for testing and for the parameter modification.

5.3.4 Drilling Data Exportation

All analyzed parameters, and eventually manually modified, are stored into a data

file using the Matlab format. To package all the parameters into data files read-

able by the real-time synthesizer, the exportation program just converts the useful

information into new formatted files. Figure 5.13 shows the printed text during the

exportation.

Additionally, for the real-time software, a “global” information file is used. This

text file gives the sampling rate, the path of the folder which contains all exported

files, and a list of the used sounds. The exportation makes a template information

file, that the users can modify before the real-time synthesis. All analyzed parts are

75

Drilling Sound Synthesis

Figure 5.13. Printing text of the exportator.

listed there. This file permits to change the path of the directory of the stored data,

and also to modify the list of the used files.

The directory path is given by the field “DATA FOLDER”, cf. fig. 5.14, and can

be modified. The sampling rate is given by the field “FS” and must not be modified.

Then the list of sounds is given. Three pieces of information are given for all sounds:

• First, the name of the data file contained in the directory. This field should not

be modified except if the name of the stored file is also modified. Note that all

the names contain: the name of the sub-directory containing the original sound

file, the name of the sound file itself, and the number of the annotated part,

with the keywords: “DIR”, “FILE” and “PART”.

• Second, a flag is given, set to 0 or 1. On the one hand, the loading of all data

files may use a big amount of internal memory, but on the other hand the disk

access to load the data each time a sound is played may be slow, and may imply

a delay. Then, this “persistent” flag informs if the data files must be loaded once

at the launch, or if they must be loaded each time the sound is played.

• Third, because the file name previously described is not always understandable,

the user has the possibility to give a new name more understandable. For ex-

ample, if the sound corresponds to an open rattling sound with 3 rods, this new

name can be “Open_Rattling_3”. In the example of fig. 5.14, we have chosen the

names of cartoon characters, Dingo, Titi, Casimir...

76

Drilling Sound Synthesis

%---

"DATA FOLDER" = ’.\drilling_data_export\’

"FS" = ’44100’

"DIR_Poraus_Aani_2009-10-07_FILE_03_norm_test_1_2t_PART_1" = ’1’ = ’Dingo’

"DIR_Poraus_Aani_2009-10-07_FILE_03_norm_test_1_2t_PART_2" = ’0’ = ’Titi’

"DIR_Poraus_Aani_2009-10-07_FILE_04_alis_test_1_2t_PART_1" = ’0’ = ’Rominet’

"DIR_Poraus_Aani_2009-10-07_FILE_05_norm_test_1_2t_PART_1" = ’1’ = ’Rémy’

"DIR_Poraus_Aani_2009-10-07_FILE_05_iske_test_1_2t_PART_3" = ’0’ = ’Casimir’

"DIR_Poraus_Aani_2009-10-07_FILE_05_iske_test_1_2t_PART_3" = ’0’ = ’Casimir2’

= ’F0: 25.39; Gdb: 1; stdT: -1; stdA: 0; attFac: .5; relFac: 2’

"DIR_Poraus_Aani_2009-10-07_FILE_06_norm_test_1_3t_PART_1" = ’0’ = ’Pollux’

"DIR_Poraus_Aani_2009-10-07_FILE_06_iske_test_1_3t_PART_2" = ’0’ = ’Choubaka’

"DIR_Poraus_Aani_2009-10-07_FILE_07_norm_test_1_4t_PART_1" = ’0’ = ’Minus_et_Cortex’

"DIR_Poraus_Aani_2009-10-07_FILE_09_norm_test_1_4t_PART_1" = ’0’ = ’Spongebob’

"DIR_Poraus_Aani_2009-10-07_FILE_09_alis_test_1_4t_PART_2" = ’0’ = ’Garfield’

"DIR_Poraus_Aani_2009-10-07_FILE_10_syv__test_1_4t_PART_3" = ’0’ = ’Milou’

"DIR_Poraus_Aani_2009-10-07_FILE_11_norm_test_1_5t_PART_1" = ’0’ = ’Kermit’

"DIR_Poraus_Aani_2009-10-07_FILE_11_norm_test_1_5t_PART_2" = ’0’ = ’Peggy’

"DIR_Poraus_Aani_2009-10-07_FILE_11_iske_test_1_5t_PART_3" = ’0’ = ’Taz’

"DIR_Poraus_Aani_2009-10-07_FILE_13_ylis_test_1_5t_PART_1" = ’0’ = ’Bugs’

"DIR_Poraus_Aani_2009-10-07_FILE_13_alis_test_1_5t_PART_2" = ’0’ = ’Winnie_l_ourson’

"DIR_Poraus_Aani_2009-10-07_FILE_14_iske_test_1_5t_PART_1" = ’0’ = ’Gizmo’

"DIR_Poraus_Aani_2009-10-07_FILE_14_taip_test_1_5t_PART_2" = ’0’ = ’Nounours’

%---

Figure 5.14. Example of an information file.

Additionally, it is possible to modify the parameter values at the data loading, as

in the line 8 of fig. 5.14, for “Casimir2”. Cf. sec. 5.3.5 for more details about the

modifiable parameters.

5.3.5 Real-Time Synthesis Library

For the implementation of the real-time synthesis into the rig simulator, we devel-

oped a library which consists in a C++ Class, named Drilling_Synthesizor. After the

creation of an instance of this class, the simulator can communicate with it using the

different methods of the class. For example, the constructor of the class receives the

name of the information file, and creates a structure with a table of all used sounds.

A method is dedicated to load a new sound, some methods get or set the values of

some parameters, and a special method computes the synthesis.

77

Drilling Sound Synthesis

Section 5.3.6 describes a Graphical User Interface which is an example of use of the

library, in order to facilitate the implementation of developers. Additionally, this GUI

is useful to test the synthesis and to modify the parameters.

In this section, first the internal architecture is briefly described, second the new

defined parameters are explained, and finally all the public methods are listed and

detailed

Synthesizer architecture: To facilitate the loading and the manipulation of the sounds,

a class Drill_Sound has been developed for a single sound. The main class Drilling_Synthesizor

contains a table of Drill_Sound instances corresponding to all sounds listed in the

information file. All the data of the sound can be loaded at the creation of the

object if the persistent flag is “true”, otherwise they are loaded using the method

Drill_Sound::load() when the sound is played. Note that this table is declared as

follows:

vector<Drill_Sound*> sound_table;

To make possible a smooth change between two different sounds, an interpolation

between them is possible. For that, two boxes current_sounds are created for the si-

multaneous synthesis of both, and a modifiable variable, between 0 and 1, sets the

mix between them. When a new sound must be played, the main Drilling_Synthesizor

object copies the Drill_Sound object from the table to the chosen box. Note that, to

reduce the amount of data and the time of the copy, the copy constructor of the class

Drill_Sound does not copy the table of the click signals. The new object shares the

same memory and an internal variable counts the number of objects which share the

memory, in order to know when it can be deleted.

Because of the simultaneous synthesis of two different sounds, the random choice

of the click position and amplitude must be done by the main Drilling_Synthesizor

object in order to perfectly synchronize the clicks of the two played sounds. Then, the

Drilling_Synthesizor object knows some of the synthesis parameters of the sounds

objects. They are: the mean frequency F0, the mean amplitude B and the deviations

σT and σB. An interpolation of this parameters is done between the two sounds.

Moreover, when a newly created sound replaces a former sound in a “box”, current_sounds,

the currently played clicks should not be suddenly stopped. Then, the former sound

object is moved from this box to a temporary “box”, and the new sound is copy in the

chosen box. This temporary box is dedicated to finish the played clicks.

To summarize, the table sound_table contains all the available sounds, the two

78

Drilling Sound Synthesis

boxes current_sounds contains the currently played sounds, with a possible interpo-

lation, and the temporary box named thrash_sound contains the former sound before

its deletion. Figure 5.15 illustrates this.

Box 1

Box 2

Tmp box

Click decisionInterpolation

Signal
summation

Sound 1

Sound 2

Sound 3

Sound 4

Sound 5

Sound 6

Sound 7

Sound 8

etc...

copy

copy

move

sound_table[] current_sounds[] *thrash_sound

synthesized sound

new click

new click

F01, B1
σT1 σB1

F02, B2.
σT2, σB2

F0, B

σT , σB .

Figure 5.15. Overview of the synthesizer architecture.

New defined parameters: To make possible an easier modification of the parameters

during the real-time synthesis, some new parameters have been defined. The aim

is not to affect a given new value, but to change it around the analyzed value. For

example, instead of giving the absolute linear gain, we can give the relative gain

in decibel. Then, because these new parameters modifies the real-time synthesis

parameters, we speak about parameter modifiers.

Moreover, not only it is possible to change all the parameters of the two currently

played sounds, separately, but also it is possible to use “global” parameters to globally

change the synthesis.

These modifiers can be set using the following methods: set_F0_param, set_gain,

set_std_time, set_std_amplitude, set_attack_factor, set_release_factor. The ar-

guments are the value, and an integer giving the target: 0 for the sound of the first

box, 1 for the second sound, and 2 for the global synthesis. Note that the attack time

Na cannot be changed.

Here is the list of all the six parameter modifiers:

79

Drilling Sound Synthesis

• Frequency (set_F0_param): for the global synthesis, the modifier value is the

translation in half-octave. For the sounds 1 and 2, the given value is the real

frequency in [Hz]. note that in this case, it is not a modifier in a strict sense.

With γ ∈ [0, 1] the mixing value, F1 and F2 the frequencies of the sounds, and

mF the global modifiers, the used interpolated frequency is:

f∗ = ((1− γ)F1 + γF2) 2
mF /2.

• Gain (set_gain): the mean amplitude can be modified using the modifiers of the

gain. The gains of the individual sounds are given in decibels, and the global

gain is linearly given. With g1 and g2 the gain modifiers in [dB] of the individual

sounds, B1 and B2 the analyzed mean amplitudes, and G the global gain, the

real mean amplitudes of the clicks of the sounds are respectively:

b∗1 = G (1− γ) B1 10
g1/20

b∗2 = G γ B2 10
g2/20

• Deviation in time (set_std_time): using the same principle for the standard

deviation in time, the modifiers change the used value around the analyzed

values. With μT1, μT2 and μTG, the modifiers of the first sound, the second

sound, and the global synthesis, and with σT1 and σT2 the analyzed value of the

sounds 1 and 2 respectively, the used value is then:

σ∗
T =

(
(1− γ) σT1 2

μT1/2 + γ σT2 2
μT2/2

)
2μTG/2.

• Deviation in amplitude (set_std_amplitude): again, the modifiers of the stan-

dard deviation in amplitude change the used value. With μB1, μB2 and μBG,

the modifiers of the first sound, the second sound, and the global synthesis, and

with σB1 and σB2 the analyzed value of the sounds 1 and 2 respectively, the used

value is then:

σ∗
B =

(
(1− γ) σB1 2

μB1/2 + γ σB2 2
μB2/2

)
2μBG/2.

• Attack factor (set_attack_factor): for the envelope shape of the attack, it is

possible to separately modify the attack factor of the sounds using a modifier.

Note that in this case, no global modifier is defined. With n the number of the

80

Drilling Sound Synthesis

considered sound, 1 or 2, αa,n the analyzed value of the attack factor, and βa,n

its modifier, during the synthesis the used attack factor of the sound n is:

α∗
a,n = −βd,n/Na + αa,n.

• Decay factor (set_release_factor): for the envelope shape of the decay, it is also

possible to separately modify the decay factor of the sounds using a modifier.

Also in this case, no global modifier is defined. With n the number of the con-

sidered sound, 1 or 2, αd,n the analyzed value of the decay factor, and βd,n its

modifier, during the synthesis the used decay factor of the sound n is:

α∗
d,n = αd,n2

βd,n/2.

Excepted for F1, F2 and G, note that with γ = 0 (or γ = 1 resp.), if the modifier

values are 0, then the used parameters are the analyzed values of the sound 1 (or

sound 2 resp.). Setting them at 0 makes no effect, 0 is then a “neutral value”. For the

global gain, the neutral value is 1, because it is linearly defined.

As seen previously, the information file is useful to set the persistent flags and to

name the sounds. It is also useful to manually set the modifiers of sounds individually

(cf. the sound Casimir2 of the fig. 5.14, line 8). Not only it is useful to refine the

parameters by the user, but also it is possible to copy a line with a different new name

and different modifiers, consequently the data file will be shared by two sounds with

different timbres. The fields F0, Gdb, stdT, stdA, attFac and relFac, respectively

initialize the modifiers of F0, B, σT , σB, αa and αd. Then, when a sound is loaded into

one of the two boxes, the analyzed parameters are loaded and are modified by these

modifiers; except for the frequency which is replaced by the value of the information

file. Note that, if the modifiers are not given in the information file, the original

analyzed values are used.

Remark 1: the stored clicks in the data file already have the shape of the analyzed

envelope. Consequently, if the envelope is modified, by βa or βd, we need to com-

pensate the envelope by doing a division by the original envelope. Note that for the

decay, we just need to compute an exponential with the following decay factor α∗
d−αd.

Finally, remark that, instead of computing some exponential functions un = u0 e
−αn

at each sample, we use the recurrence equation un = un−1 e
−α, with properly chosen

initial value of u0.

Remark 2: the modifiers βa and βd are defined so that the use of positive values

81

Drilling Sound Synthesis

makes a smoother click envelope, and the use of negative values makes a sharper

click envelope.

Class methods:

Drilling_Synthesizor(string info_file_name);

Standard constructor of the Class. This constructor receives the name of the

information file, and loads all useful data into the internal memory of the in-

stance.

Drilling_Synthesizor(Drilling_Synthesizor &source_synth);

Copy constructor. In the case where the object has to be “cloned” to another

instance, this method receives the source object and returns the newly created

object. Note that, a part of the internal allocated memory is not duplicated, it is

the case of the loaded click signal which are in read only mode. Using a count of

objects sharing the memory, we can know when this memory has to be deleted.

∼Drilling_Synthesizor(void);

Destructor of the class. This method deletes the allocated memory, and decre-

ments the count for the sharing memory, or deletes it if it is the last instance

that uses it.

void DSP_Process(int N, float *x);

Callback of the DSP process of the class. This method returns the new N samples

of the synthesized sound, into the buffer pointed by x. Remark that the number

format is the single precision floating points, using 32 bits, which is the usual

format for plugins of sound synthesis and audio effects in music. Nevertheless,

for Audio APIs, the format is usually the output format which is usually signed

integers with 16 bits, then a conversion must be done.

void init_sound(int option, int number);

void init_sound(int option, string name);

These methods make the loading of sound, and prepares it for synthesis. With

the first version, the number of the sound to load is given, this number cor-

responds to the sorted list of the information file, starting from 1. With the

second version, the new name is given, corresponding to the given new name in

the information file. Note that if the number 0 is given, then an empty sound

82

Drilling Sound Synthesis

is loaded. Additionally, the integer option is the ID of the box where the sound

must be loaded: 0 for the first box, and 1 for the second.

int get_current_sound_number(int option);

Gives the number of the sound currently loaded in the box given by the ID

option.

int get_Fs(void);

Returns the sampling rate in Hz, which is the value given in the information

file.
int get_n_sounds();

Returns the number of available sounds, which is the number of listed sounds

in the information file.

void switch_sounds();

Switches the currently loaded sounds. The sound of the box 1 goes to the box 2,

and reciprocally. Also the mixing value is inversed γ ← 1−γ, which provides no

artifact in the synthesis. This method is useful to successively play and inter-

polate some sounds, cf. sec. 5.3.6.

string get_file_name(int isound);

string get_new_name(int isound);

Returns the name of the data file corresponding to the number isound, or its

given new name, as in the information file.

string get_data_folder(void);

Returns the directory path of the data files, as in the information file.

void set_mix(float new_mix_val);

float get_mix(void);

Sets or gets the current mix value γ. This synthesis parameter is useful to make

a smooth interpolation between 2 sounds.

void set_F0_param(float value, int option);

void set_gain(float value, int option);

void set_std_time(float value, int option);

void set_std_amplitude(float value, int option);

void set_attack_factor(float value, int option);

83

Drilling Sound Synthesis

void set_release_factor(float value, int option);

These methods set all the different synthesis parameters. The integer option is

0 or 1 to set the parameters of the current sound in the boxes 1 or 2, and it is 2

to set the “global” parameters.

float get_F0_param(int option);

float get_gain(int option);

float get_std_time(int option);

float get_std_amplitude(int option);

float get_attack_factor(int option);

float get_release_factor(int option);

These methods return the current values of the synthesis parameters. Also the

integer option is 0 or 1 to set the parameters of the current sound in the boxes

1 or 2, and it is 2 to set the “global” parameters.

vector<string> get_errors();

bool is_new_errors();

The first method returns a list of the error messages, and the second returns a

flag to know if some errors have occurred since the last call.

5.3.6 Demonstration Application

The graphical user interface, developed in C++, is mainly used as an example of im-

plementation of the C++ Library. Nevertheless, it can also be used to choose the syn-

thesized sounds among the complete list of available sound, and to manually modify

the parameters (modifiers).

This application uses standard Graphical APIs dedicated for Windows 32 bits, and

the Bass library for audio playback. It is not the best choice, but it has been the most

convenient for us. Figure 5.16 illustrates it.

The principle of this application is simple: to associate most of the Class methods

with one graphical control. Then the user and the developer can easily understand

the role of every method, and the effect of every parameter: the top panel allows to

load a sound into the boxes 1 and 2, using the file name, the new defined name or the

number. A slider makes possible the interpolation between the two loaded sounds.

Also, a button switch executes the method switch_sounds(). The main panel allows

the modification of all parameters. The different parameters can be modified using

the corresponding slider and the currently used value is printed above it. Also, a

84

Drilling Sound Synthesis

scrolling menu “Edit Parameters” changes the value of the integer option. Finally,

the top right panel is useful to set the global volume, to activate or to stop the audio

playback, and to compare the synthesis and the original sounds. Additionally, the

button Sequence launches a sequence of automatic changes of parameters, cf. below.

Figure 5.16. Screenshot the Graphical User Interface. Example of implementation of the C++ real-
time library.

To illustrate how to use the methods of the class in real-time, we also developed a

“sequencer”. Pressing the button “sequence”, a text file containing the sequence is

read and played.

In this text file, cf. an example in fig. 5.17, the time synchronization is given by

the command sleep n, where n is the time to wait in hundredths of seconds before

the execution of the next command. The command load1 name loads the box 1 by

the sound with name name. In the same way the command load2 name loads the

second box. The command switch interchanges the sounds of the boxes and reverses

the mixing value γ ← 1−γ. The commands mF0, Gain, stdT, stdA, mix set the global

modifiers and the mix value between 0 and 1. Finally, the command interpol param

v1 v2 time, makes the interpolation of the modifier param, cf. previously, from the

value v1 to v2 during time hundredths of seconds.

85

Drilling Sound Synthesis

To successively play the list of sounds, with smooth transitions, the principle is to

follow this iterative procedure:

(1) loading of the box 1, with the first sound,

(2) loading of the box 2, with a new sound,

(3) interpolation of the mixing value between 0 and 1,

(4) switch of the sounds, it automatically reverses γ,

(5) return in (2).

86

Drilling Sound Synthesis

% --

load1 21-part3

mF0 -1

Gain 0

stdT 0

stdA 0

mix 0

sleep 100

load1 21-part3

interpol Gain 0 .7 10

interpol mF0 -1 0 100

sleep 150

load2 21-part1

interpol mix 0 1 50

interpol Gain .7 1 10

sleep 300

load2 21-part2

interpol mix 0 1 10

sleep 70

switch

interpol Gain 1 .7 10

load2 21-part3

interpol mix 0 1 30

sleep 150

switch

load2 21-part4

interpol Gain .7 1 10

interpol mix 0 1 10

sleep 10

switch

load2 21-part5

interpol mix 0 1 300

sleep 300

interpol mF0 0 -3 30

sleep 30

interpol Gain 1 0 30

sleep 100

% --

Figure 5.17. Example of a sequence.

87

Drilling Sound Synthesis

88

6. Evaluation

6.1 Listening Test at Creanex

6.1.1 Procedure

The hydraulic sounds and the harvester and forwarder sounds created in this project

were evaluated in an informal listening test. Two experts were asked to first deter-

mine whether the sound sample sounds realistic or not, after which they could rate

the sound on a scale of 0 to 5 (0 = poor, 5 = excellent). The expert listeners were both

employees of the simulator company and both had excellent knowledge regarding the

forwarder and harvester simulators. In addition, one expert had real life experience

in operating the actual machines. Some of the sounds presented were played along

with video of the actual event to more closely simulate how the sound would work

in a simulator. The listening test itself was a very informal event where the experts

could give comments and feedback orally and in writing at any time. The experts

were also allowed to hear the samples as many times as required.

The idea behind the listening test was to receive feedback from people with real life

experience with the machines and simulators in question. Their feedback is essential

in determining whether the sounds created for the simulators actually correspond to

the actual machines they are simulating. The feedback and results were fairly pos-

itive, although some sounds were deemed unrealistic and requiring improvements.

Though some sounds failed in sounding realistic enough, the listening test as a whole

was very successful as it lead to some excellent discussion and improvement ideas for

the sounds. The results and improvements will be discussed below.

89

Evaluation

6.1.2 Results and Improvements

Table 6.1 shows the results of the listening test. The test Experts are labeled as A

and B, where A is the test Expert with experience in operating the actual machines.

Table 6.1. The results of the listening test.

Does the sound sample sound How realistic

like the sound event in question? is the sound?

Sound Event Expert A Expert B Expert A Expert B

Feeding Yes Yes 3 3

Feeding & Delimbing Yes No 2 0

Hydraulic Sounds Yes Yes 4 5

Hydraulic Pump Yes Yes 4 4

Contact Bunks Yes Yes 4 5

Contact Screen Yes No 3 2

Contact Grapple Yes Yes 4 4

Contact Logs Yes Yes 4 3

Load Brake No No 0 1

For the first question regarding whether the sound samples actually sound like

the sounds they are simulating, Expert A answered "Yes" 8 out of 9 times (89 %)

and Expert B 6 out 9 times (67 %). The load brake sound was the one sound both

experts agreed did not sound realistic. Both experts still considered a majority of

the sounds to correlate to their corresponding sound events. The calculated average

scores regarding the authenticity of the sounds were very similar for both experts.

Expert A rated the sounds with an average of 3.1 and Expert B with an average

rating of 3.0.

6.1.3 Feeding

The feeding sound was played along with a video clip of feeding and it received fairly

positive feedback from both experts. Expert A suggested amplifying the sound of the

feed rollers, which can apparently be a very loud sound due to the rollers scraping

against the bark of a tree. Expert B noted that the authentic characteristics of the

sound had been found, although the result could have been much better with higher

quality source material. Expert B’s point is a very valid one, as the source material

90

Evaluation

was littered with engine and wind noise, which however was suppressed by filtering,

will surely cause loss of quality in the final synthetic result. With a cleaner recording

of a feeding event, the loud sound of the feed rollers could possibly be more prominent

in the final result.

6.1.4 Feeding and Delimbing

The delimbing sound was played combined with the feeding sound (along with a video

clip), but it did not perform well in the listening test. The single crackling sounds

were also played separately to the experts. Expert A gave the sound a rating of

2.0 and Expert B did not consider it realistic at all and rated it a 0.0. According

to the discussion and feedback on the delimbing sound, the synthesis method itself

is fine, but the "crack" or "snap" sounds created are too short and clean sounding.

This is mostly due to the source material used, meaning more appropriate sounds

of branches breaking would need to be either recorded or obtained. Expert A com-

mented that the sounds more closely resembled the sound of an ax chopping wood,

instead of the delimbing knives cutting branches.

6.1.5 Hydraulic Sounds

The hydraulic sounds were played back in a longer sound clip with a combination

of the different hydraulic sound types presented in Sec. 3. This longer sound clip

aimed to simulate the sound of hydraulic cylinders at work. The single sounds were

also played separately and compared to the real hydraulic sounds. The feedback for

the sounds was excellent, as Expert A gave the sounds a 4.0 rating and Expert A

a rating of 5.0. Expert A especially praised the high frequency variable hydraulic

sound, which sounded extremely realistic, cf. Sec. 3.3.4.

6.1.6 Hydraulic Pump

The hydraulic pump sound of the harvester also received positive feedback, which

is not surprising as it was synthesized in the same fashion as the other hydraulic

sounds, which also received excellent reviews. The sound was played along with a

video clip similar to the other harvester and forwarder sounds. Most of the discussion

on this particular sound was in determining the difference between the squeal of the

turbo and the whistling sound created by the hydraulic pump. According to both

91

Evaluation

experts, both sounds are very similar as they are both high frequency "squeals" or

"whistling sounds". In the end, both experts agreed the sound of the turbo is an even

higher frequency sound and this particular synthetic sound is that of the hydraulic

pump.

6.1.7 Forwarder Contact Sounds

Four different contact sounds were played back individually to the experts and each

sound was rated separately. The sounds were also played back with a short video clip

where they were all utilized to present the sounds in the correct context. The four

contact sounds reviewed were: logs hitting the bunks (vertical poles), logs hitting

the screen (the back of the carriage), sound of the grapple opening, and the sound

of logs dropping. As shown in Table 6.1, the contact sounds scored fairly well with

both experts. The screen sound received some critique as the sound of the grapple

opening can apparently be heard in the sound sample. A lower frequency sound was

also requested for the sound of the logs dropping, as they currently sounded a bit too

synthetic.

6.1.8 Load Brake Sound

The synthetic load brake sound scored very poorly in the test (A: 0, B: 1). This is

mostly due to a lack of source material, as the load brake is extremely hard to hear

in the forwarder videos (practically inaudible). The sound was synthesized on the

basis of the sound sounding like a squeaky bicycle saddle. The synthesis method

itself is correct, but an actual recording of a load brake would be required to achieve

a realistic result.

92

Evaluation

6.2 Listening Test at Sandvik

6.2.1 Procedure

In a similar way, the sound synthesis of drilling sounds has been evaluated using a

listening test with employes of Sandvik. Four experts who have an excellent experi-

ence in drilling machines, were asked to determine whether the sound samples are

realistic or not, after which they could rate the sounds on a scale from 0 to 5 (0 =

poor, 5 = excellent). Again, this listening test was informal, the subjects could give

oral or written comments and feedbacks, and they were allowed to listen every sound

as many times as wanted.

In this test, some situations have been tested: normal drilling, under feeding, over

feeding, deep drilling, bending, closed rattling and open rattling; cf. sec. 5 for a

description of these situations. For most of the situations, we also tested different

frequencies and different values of the deviations in time and amplitude, σT and

σB. Indeed, according to preliminary informal tests, we expected than the analyzed

values of the deviations were over-estimated, then we decided to test the original

obtained values, and also reduced values.

Remark that the original denoised sound has been played; the subjects were in-

formed and they were asked to rate the denoising. When the original sound was

played, it was always in second position, and the played first sound was always the

apparently best result according to our preliminary informal test.

In the next section, all situations are presented, with the descrition of the tested

sounds, the results, and comments. The last section gives some general comments

about the synthesis.

6.2.2 Normal Drilling

For normal drilling, we tested first the apparent best deviations, half the analyzed

values; second the original denoised sound; third the synthesis with the analyzed

frequency and the analyzed deviation; then the synthesis with half deviations and

modified frequency: 30Hz and 40Hz. Remark that the length of all played sounds

was 5 seconds, as with the other situations, cf. sections below, but the original de-

noised sound has a length of 2 seconds, then the sound had to be looped. Even if this

looping effect was audible, it was not disturbing because of the relative stability of

93

Evaluation

the sound. Remind that this problem never occurs with synthesized sounds. They

are summarized here:

• Sound 1: Analyzed frequency (34Hz), deviations divided by 2.

• Sound 2: Original sound.

• Sound 3: Analyzed frequency (34Hz), and analyzed deviations.

• Sound 4: Modified frequency F0 = 30Hz, and deviations divided by 2.

• Sound 5: Modified frequency F0 = 40Hz, and deviations divided by 2.

All the results for normal drilling are collected in next table. For all sounds, the

subjects were asked to say if the sound is realistic, using the letter “y” for yes, or not

using “n” for no. Also they were asked to rate the realism from 0 to 5. Note that

in some cases, for unknown reasons, some subjects did not rate some sounds. The

missing answers are noted using “-”.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 5 y 3 y 3 y 3

sound 2 y 5 y 2 y 3 y -

sound 3 y 4 y 3 y 2 y 1

sound 4 n 2 y 2 y 1 n -

sound 5 y 3 y 3 y 3 y 4

As a first trend, the sound 1 is the preferred one for most of the subjects, as ex-

pected. Compared to the sound 3 which has the analyzed deviations, the rates are

slightly better, which confirms that the deviations were over-estimated. Note that the

original sound, number 2, has similar rates, and the subjects judged that the sound

1 is really close to the original. Also, all the sounds 1, 2, 3, and 5 are judged realistic,

and the worse sound is the number 4 with lower frequency which has been marked

unrealistic by two experts.

Consequently, this results shows the accuracy of the analysis and the quality of the

synthesis. Nevertheless, as expected, the deviations were slightly over-estimated,

and we modified the analysis in order to automatically choose refined deviations.

Two additional and interesting comments were given: first a subject said that the

sound 4, with lower frequency, seems to be from a small machine, and the sound 3

with higher deviations seems to be from an under-feeding. The first comment implies

that we can reduce the audibly perceived size of the machine by reducing the fre-

94

Evaluation

quency, and the second comment suggests that the under-feeding situation is charac-

terized by an irregular drilling. These remarks may have also physical justifications.

6.2.3 Under Feeding

For the under-feeding situation, the tested sounds are descibed below, and the results

are given by the next table.

• Sound 1: Analyzed frequency (36Hz), and deviations divided by 2.

• Sound 2: Original sound.

• Sound 3: Analyzed frequency (36Hz), and analyzed deviations.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 5 y 4 y 3 y 4

sound 2 y 5 y 4 y 3 y -

sound 3 - 3 n 2 n 1 n -

Again, the preferred synthesized sound is the first sound, with half the value of the

analyzed deviations; and again, the sound 1 and the original sound, number 2, were

judged similar. Note that, a subject said that the synthesized sound 1 is even slightly

better than the original sound.

6.2.4 Over Feeding

For the over-feeding situation, the tested sounds are descibed below, and the results

are given by the next table.

• Sound 1: Analyzed frequency (27Hz), and deviations divided by 4.

• Sound 2: Original sound.

• Sound 3: Analyzed frequency (27Hz), and analyzed deviations.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 5 y 2 y 3 y 3

sound 2 y 5 y 3 y 4 y -

sound 3 y 3 y 1 y 1 n -

We obtain similar results as with the under-feeding situation.

95

Evaluation

6.2.5 Deep

For deep drilling, the tested sounds are descibed below, and the results are given by

the next table. Note that, here we only tested the synthesis with original analyzed

value, and the original denoised sound.

• Sound 1: Analyzed frequency (34Hz), and analyzed deviations.

• Sound 2: Original sound.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 5 y 2 y 3 y 4

sound 2 - 5 y 4 y 4 y 4

Obviously, even if the rates of the synthesis are mainly slightly lower than the

original sound, the synthesis is judged realistic. Note that as with the under-feeding

situation, a subject judged that the synthesized is better than the original sound.

6.2.6 Bending

For bending rod string, the tested sounds are descibed below, and the results are

given by the next table.

• Sound 1: Analyzed frequency (40Hz), and deviations divided by 2.

• Sound 2: Original sound.

• Sound 3: Analyzed frequency (40Hz), and analyzed deviations.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 5 - - y 2 y 4

sound 2 y 5 - - y 2 y 1

sound 3 y 4 - - y 1 y 2

We obtain similar results as with the under-feeding situation. Note that most of the

subjects agreed to say that the sound 1 and the original sound, number 2, are very

similar in this example. They also added that the bending situation is very hard to

distinguish from normal drilling.

96

Evaluation

6.2.7 Rattling (Closed)

For closed rattling, the tested sounds are descibed below, and the results are given by

the next table. Note that in this case, the original sound sample is very short, almost

half a second, and the timbre changes a lot. This produced a very disturbing looping

effect, and that’s the reason why we decided to not play the original sound. Here, we

only compared two different frequencies: the original analyzed frequency, 41Hz, and

a modified frequency, 30Hz.

• Sound 1: Analyzed frequency (41Hz), and deviations divided by 2.

• Sound 2: Modified frequency F0 = 30Hz, and deviations divided by 2.

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 3 y 4 y 3 y 2

sound 2 y 4 y 2 y 1 y 1

Because the preferred synthesized sound has the original frequency, this test re-

veals again that the frequency is also an important property for realistic sounds.

Even if we had not planned to test the playback volume, the subjects remarked that

an important property of rattling sounds is the level. Indeed, rattling always oc-

curs with very high level and very high frequency components. Then, it is obviously

important to adjust the gain of rattling sounds with higher level than with other

situations.

6.2.8 Rattling (Open)

For open rattling, the tested sounds are descibed below, and the results are given by

the next table. For the same reason than with closed rattling, the original denoised

sound is not tested here. Again, we only tested the frequency.

• Sound 1: Analyzed frequency (30Hz), and deviations divided by 2.

• Sound 2: Modified frequency (25Hz), and deviations divided by 2.

• Sound 3: Modified frequency (40Hz), and deviations divided by 2.

97

Evaluation

Operator 1 Operator 2 Operator 3 Operator 4

sound 1 y 4 y 3 y 3 y 4

sound 2 y 3 y 2 y 1 y 2

sound 3 y 3 y 4 y 4 y 4

Again, the original analyzed frequency is the preferred one, and the subjects did

the same remarks as with open rattling about the sound level.

6.2.9 General Comments, Conclusion and Improvements

In a general conclusion of these listening tests: first, the original analyzed frequency

is always the preferred one; second, the ratting sounds, closed and open, need a

higher level; and third, the original analyzed deviations were over-estimated in most

of the cases.

As a consequence of the given rates, these tests revealed that the developed analysis

is very accurate and the proposed synthesis is realistic with a high quality. Moreover,

in many cases some subjects judged the synthesized sounds, with adjusted deviations,

better and clearer than the original sounds. Nevertheless, as seen, the deviation were

over-estimated, thereafter we adjusted the analysis parameters such that the good

deviations were automatically chosen by the analysis procedure.

98

7. Conclusions and Future Work

This report presented different sound synthesis methods for working machine simu-

lators. Sounds were synthesized for three different simulators and their correspond-

ing machines: the forest harvester and forwarder, a drill rig, and a truck-mounted

hydraulic platform. Several different signal processing techniques and synthesis ap-

proaches were employed, including filtering, spectral subtraction, linear predictive

coding, non-negative matrix factorization, envelope estimation, and peak detection.

The work was divided into four main parts: hydraulic sounds, forwarder/harvester

sounds, drilling sounds, and evaluation.

Hydraulic sounds were synthesized using LPC and a white noise excitation signal.

Several different hydraulic sounds were first analyzed and extracted from the source

material and then synthesized. These hydraulic sounds included: the basic sound,

a fading sound, a high frequency sound, a variable high frequency sound, and three

different piston contact sounds. The benefits of the synthetic versions of these sounds

include the ability to create sound samples of any length required without a looping

sound effect and the advantage of being completely free of background noise. The

hydraulic sounds created in this project can be utilized in any of the three simulators,

as the machines themselves rely heavily on hydraulic operations. The simulators did

not include existing hydraulic sounds, thus these newly created sounds can add a

new element of reality to the training process.

The main sounds synthesized for the forest harvester and forwarder were feeding,

delimbing, and basic contact sounds. LPC and sliding average filters were employed

in the synthesis of the feeding and delimbing sounds. LPC was used to extract the

spectral features of the sounds and sliding average filters isolated the amplitude en-

velopes, which combined with a white noise excitation formed a synthetic result. Con-

tact sound samples were simply created by applying spectral subtraction to noisy real

99

Conclusions and Future Work

life sound samples of the different contact situations.

A simple drilling sound already existed in the drill rig simulator which utilized

pitch shifting to alter the drilling frequency. This project aimed to improve the

drilling sound by removing the need for pitch shifting, which can often lead to very

unrealistic sounding results. This was achieved by separating single click sounds

from the original drilling sound sample and playing them back at the correct drilling

frequency. As seen, first the original sounds are denoised using a NMF based method,

then an optimization procedure estimates the time envelope of all clicks. Finally the

envelope is used to extract some single clicks, with a significantly reduced contribu-

tion of the neighbouring clicks. The synthesis is then really low-cost because it only

consists in playing back the extracted clicks in real-time, using the wanted frequency,

and with some fluctuations in frequency and in amplitude to improve the realism. A

software package has been developed in order to facilitate the work of developers of

rig simulators.

The last section presented the two listening tests which were performed regarding

the hydraulic, forest machine, and drilling sounds. Some experts were employed in

evaluating the sounds created in a very informal listening test, which consisted of

simple questions and oral feedbacks. The sounds scored fairly well in the evaluation

with some sounds performing better than others. The sessions was an extremely

fruitful one with excellent discussion and ideas on how to improve the sounds.

Better source material would also help in improving some of the harvester and

forwarder sounds. Delimbing would require better and more suitable recordings of

branches breaking to correctly mimic the sound of a delimbing event. The sound

of a load brake could also be successfully synthesized with an actual recording of

the sound. Although in some cases the lack of proper source material decreased

the quality of the synthetic results, the methods presented in this project should

still prove to be valuable and useful in improving the sound environment in working

machine simulators.

100

Bibliography

[1] A. Okapuu-von Veh, R. Marceau, A. Malowany, P. Desbiens, A. Daigle, R. Gauthier,
A. Shaikh, and J. Rizzi, “Design and operation of a virtual reality operator-training
system,” IEEE Transactions on Power Systems, vol. 11, no. 3, 1996.

[2] H. Ploner-Bernard, A. Sontacchi, G. Lichtenegger, and S. Vössner, “Sound-system de-
sign for a professional full-flight simulator,” in Proc. of Int. Conference on Digital Audio
Effects (DAFx’05), 2005.

[3] S. Vössner, R. Braunstingl, H. Ploner-Bernard, and A. Sontacchi, “A new functional
framework for a sound system for realtime flight simulation,” in Proc. of Int. Conference
on Digital Audio Effects (DAFx’05), 2005.

[4] S. Oksanen, J. Parker, and V. Välimäki, “Physically informed synthesis of jackhammer
tool impact sounds,” in Proc. of Int. Conference on Digital Audio Effects (DAFx-13), 2013.

[5] P. R. Cook, Real Sound Synthesis for Interactive Applications. AK Peters, Ltd., 2002.

[6] D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7, 1988.

[7] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE, vol. 63,
1975.

[8] S. Oksanen, J. Parker, and V. Välimäki, “Vibroacoustic analysis and synthesis of
struck metal bars using musical instrument modeling techniques,” in Akustiikkapäivät
(Finnish Acoustics Days), 2013.

[9] J. Smith, Viewpoints on the History of Digital Synthesis, 1991, online access June 26,
2014. [Online]. Available: https://ccrma.stanford.edu/~jos/kna/

[10] ——, Introduction to Digital Filters, 2007, online access July 14, 2014. [Online].
Available: https://ccrma.stanford.edu/~jos/filters/

[11] R. Moog, “A voltage-controlled low-pass high-pass filter for audio signal processing,” in
17th AES Convention, 1965.

[12] A. Huovilainen, “Non-linear digital implementation of the Moog ladder filter,” in Proc. of
Int. Conference on Digital Audio Effects (DAFx-04), 2004.

101

Bibliography

[13] S. Golestan, M. Ramezani, J. Guerrero, F. Freijedo, and M. Monfared, “Moving aver-
age filter based phase-locked loops: Performance analysis and design guidelines,” IEEE
Transactions on Power Electronics, vol. 29, no. 6, 2014.

[14] R. Lyons, Understanding Digital Signal Processing. Pearson Education, 2011.

[15] J. Kaiser, “On the use of the i0-sinh window for spectrum analysis,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. ASSP-28, no. 1, 1980.

[16] E. Weisstein, Modified Bessel Function of the First Kind, MathWorld–A Wolfram
Web Resource, online book, accessed October 16, 2014. [Online]. Available:
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html

[17] V. Välimäki and A. Huovilainen, “Oscillator and filter algorithms for virtual analog syn-
thesis,” Computer Music Journal, vol. 30, no. 2, 2006.

[18] U. Zölzer, DAFX - Digital Audio Effects. Wiley, 2002.

[19] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. ASSP-27, no. 2, 1979.

[20] J. Allen, “Short time spectral analysis, synthesis, and modification by discrete Fourier
transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-
25, no. 3, 1977.

[21] H. Nia and H. Hu, “Applying Bayesian decision theory to peak detection of stochastic
signals,” in 4th Computer Science and Electronic Engineering Conference (CEEC), 2012.

[22] M. Heiniö, Rock Excavation Handbook. Sandvik Tamrock Corp., 1999.

[23] C. Févotte, B. Torrésani, L. Daudet, and S. Godsill, “Sparse linear regression with struc-
tured priors and application to denoising of musical audio,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 16, no. 1, 2008.

[24] D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix factoriza-
tion,” Nature, vol. 401, no. 6755, 1999.

[25] P. Smaragdis and J. Brown, “Non-negative matrix factorization for polyphonic music
transcription,” in IEEE Workshop on Appl. of Signal Proc. to Audio and Acoust. (WAS-
PAA03), 2003.

[26] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” Advances in
Neural Information Process. Systems (NIPS). MIT Press, 2000.

[27] E. Walter and L. Pronzato, Identification of Parametric Models, ser. Communications
and Control Engineering, 1997.

[28] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder-
Mead simplex method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1,
1998.

[29] NIST/SEMATECH, e-Handbook of Statistical Methods, online book, accessed September
26, 2014. [Online]. Available: http://www.itl.nist.gov/div898/handbook/

102

9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

9HSTFMG*afjgdb+

ISBN 978-952-60-5963-1 (printed)
ISBN 978-952-60-5964-8 (pdf)
ISSN-L 1799-4896
ISSN 1799-4896 (printed)
ISSN 1799-490X (pdf)

Aalto University
School of Electrical Engineering
Department of Signal Processing and Acoustics
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-S

T 16
/2

014

This report summarizes the results of the
REMES project, ''Realistic Machine and
Environmental Sounds for a Training
Simulator to Improve Safety at Work''. Its
aim is to improve the sound environment in
working machine simulators.

Modern simulators are visually and
operationally extremely advanced and
realistic, but the sound environment is still
limited. By improving the sounds in these
simulators, the simulators can grow into
exceptionally realistic training tools with
the ability to fully educate future operators
in a completely safe environment.

Existing sounds are improved and new
sounds are created for three different
simulator types: a forest harvester and
forwarder simulator, a drill rig simulator,
and a truck-mounted hydraulic platform
simulator. The main sound types
synthesized are hydraulic sounds, drilling
sounds, feeding and delimbing sounds
(forest machines), and basic contact sounds.

V. M
äntyniem

i, R
. M

ignot, and
 V. Välim

äki
R

E
M

E
S

 Final R
ep

ort
A

alto
 U

n
ive

rsity

Department of Signal Processing and Acoustics

REMES Final Report
The Finnish Work Environment Fund TSR Project no. 113252

Ville Mäntyniemi, Rémi Mignot, and Vesa
Välimäki

RESEARCH REPORT SCIENCE +
TECHNOLOGY

