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TIIVISTELMÄ 
 

 

 

 

 
 

 

Työ- ja liikenneturvallisuusvirkailijat ovat kauan tiedostaneet vastatoimien tarpeen 

väsyneenä ajamiseen, koska se on suuri osatekijä liikenneonnettomuuksissa [1, 2]. 

Suomessa jopa 40 % kyselyihin vastanneista pitkän matkan rekkakuskeista ja 21 % lyhyen 

matkan rekkakuskeista, raportoivat vaikeuksia hereillä pysymisessä jopa 20 % 

matkoistaan. Yli 20 % vastanneista pitkän matkan rekkakuskeista myöntävät nukahta-

neensa rattiin ainakin kahdesti [3]. 

 

Väsynyt kuljettaja tekee harvoja mutta suuria korjausliikkeitä ratilla [4, 5], mikä kasvattaa 

ulosajon riskiä [6, 5]. Nykyiset kaistavahdit havaitsevat vain 30-40 % kaikista kaistalta 

poikkeamisista koska ne ovat video-pohjaisia ja menettävät usein tietoa [8]. Osoitimme 

äskettäin että auton siirtofunktio mahdollistaa rattisignaalin muuntamisen kaistasijainti-

signaaliksi [9]. Kaistavahti, joka perustuisi tähän menetelmään, olisi luotettavampi ja sen 

pitäisi havaita kaistalta poikkeamiset suuremmalla herkkyydellä kuin nykyiset video-

pohjaiset järjestelmät. 

 

On epävarmaa, ehkäiseekö kaistavahti todella onnettomuuksia havaitsemalla kaistalta 

poikkeamisia [8, 10, 11]. Teknologia, joka ennustaisi kaistalta poikkeamisia, antaisi 

kuljettajalle aikaa ehkäistä lähestyvää vaaratilannetta. Tähän asti tutkijat ovat käyttäneet 

yhdistelmää autopohjaisista ja fysiologisista signaaleista ennustaakseen väsymystä viisi 

minuuttia eteenpäin [12]. Toisaalta, järjestelmä joka perustuu fysiologisiin signaaleihin 

saattaa olla häiritsevä kuljettajalle ja altis tiedon menetykselle. Kvanttineuroverkkoja 

(QNN) käytetään ennustamaan nopeita ja hetkellisiä vaihteluja osakemarkkinoilla 

(ihmisen toiminta) ja auringonpilkkujen aktiviteettiä (luonnollinen toiminta) [13-15], ja 

niitä voisi käyttää myös ennustamaan kaistalta poikkeamisia rattisignaaleista. 

 

Simulaattoripohjainen koulutus on tärkeää ammattikuljettajien koulutuslaitoksille, koska 

se mahdollistaa vaaratilanteiden emuloinnin ja analysoinnin, kuten esim. miten toimia kun 

linja-auto ajaa jäisen tiekohdan yli [16]. Vaikka simulaattorit ovat arvokkaita koulutuksen 

kannalta, kouluttajien pitää varautua opiskelijoihin, jotka kärsivät simulaattoripahoin-

voinnista [17]. Simulaattoripahoinvointi aiheuttaa traumoja, jotka rajoittavat koulutuksen 

tehokkuutta, ja lisää keskeyttämisten määrää [18]. Simulaattoripahoinvoinnille alttiiden 

opiskelijoiden tunnistaminen antaisi kouluttajalle mahdollisuuden keskeyttää harjoitus-

kerran ennen pahoinvoinnin alkamista – tämä parantaisi pahoinvoinnille alttiiden 

opiskelijoiden simulaattorikoulutuksen laatua ja määrää. Koska sykevälivaihtelu (HRV) 

on stressitunniste, sitä voitaisiin käyttää ennustamaan simulaattori-pahoinvointia.  

 

Projektilla (2014-2015) oli kolme tavoitetta: 1) ennustaa simulaattoripahoinvointia, 2) 

havaita ja 3) ennustaa kaistalta poikkeamisia rattisignaalista. Tutkimukseen värvättiin 34 

opiskelijaa Työtehoseuran Logistiikka ja ajoneuvot-osastolta. Koehenkilöt ajoivat 

Työtehoseuran kahdessa korkealaatuisessa ajosimulaattoreissa 80 km/h nopeudella 55 min 

joka kolmas tunti 36 tunnin valvomisen ajan yhteensä 31200 km ajoa. Ajokertojen aikana 

tallensimme simulaattoreiden ratti- ja kaistasijaintisignaaleja 60 Hz:n näytteistys-

taajuudella. Mittasimme myös osallistujien sydänkäyrää (ECG) 500 Hz:llä. Välittömästi 

ennen jokaista ajokertaa ja jokaisen ajokerran jälkeen osallistujat tekivät 10-minuutin 

Kolmellakymmenelläneljällä osallistujalla, jotka yhteensä ajoivat 31200 km korkea-

laatuisissa rekkasimulaattoreissa, näytimme että kaistalta poikkeamisia voi havaita 

rattisignaalista ja että ajonjälkeiset simulaattoripahoinvointitulokset korreloivat ajoa 

edeltävän sykevälivaihtelun kanssa. 
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valppaustestin (Psychomotor Vigilance Test, PVT) ja arvioivat pahoinvoinnin, okulo-

motorisen epämukavuuden ja disorientaation oireet simulaattoripahoinvointi-kyselyssä 

(Simulator Sickness Questionnaire, SSQ) samalla, kun sydänkäyrää mitattiin. 

 

Käytimme ensimmäisinä kvantitatiivista sydänkäyrää ennustamaan mitkä osallistujat 

tulevat kokemaan simulaattoripahoinvointia, ja keskityimme dataan kolmen ensimmäisen 

ajokerran ajalta, jolloin koehenkilöt vielä olivat virkeitä (välttääksemme väsymyksen 

vaikutuksen heidän SSQ-arvoihinsa). N=15 osallistujalla SSQ-tulos oli ajokertojen jälkeen 

korkeampi kuin ennen ajoja, ja muilla n=19 ei. Ennen ajoa (PVT- ja SSQ tehtävien aikana) 

LF/HF-suhde (joka on ECG-signaalista laskettu tunnusluku [30]) oli pienempi niillä 

osallistujilla, jotka saivat korkeamman SSQ-arvon ajon jälkeen. Vaikka ero kahden 

ryhmän välillä (n=15 ja n=19) ei ollut tilastollisesti merkitsevä, tämä ero osoittaa että 

LF/HF-suhteesta voisi ennustaa simulaattoripahoinvointia. Perustelu tälle on se, että 

kukaan osallistujista ei saanut korkeita SSQ-arvoja ensimmäisten kolmen testikerran 

aikana – LF/HF-suhtessa havaittu ero n=15 kuljettajalla oli lievä (toisin sanoen, kukaan 

kuljettajista ei keskeyttänyt ajoa simulaattoripahoinvoinnin takia). Seuraavaksi meidän 

pitäisi validoida parametri vapaaehtoisilla, jotka kokevat simulaattoripahoinvointia. Se, 

että kukaan osallistujista ei saanut korkeita SSQ-arvoja levänneenä tarkoittaa myös, että 

ammattikuljettajien koulutuslaitokset voisivat käyttää koejärjestelyjämme helpottaakseen 

opiskelijoidensa totuttautumista simulaattoripohjaiseen koulutukseen. Eritoten, koulu-

tuksen aloittaminen maantieajoskenaariolla auttaisi opiskelijoita sopeutumaan simuloituun 

ympäristöön. 

 

Havaitaksemme kaistalta poikkeamisia rattisignaalista määritimme ensin simulaattoreiden 

siirtofunktiot ja käytimme niitä laskemaan kaistasijaintia mitatuista rattisignaaleista. 

Pearsonin korrelaatiokerroin laskettujen ja mitattujen kaistasijaintisignaalien välillä oli 

r=0.48 (n=3151). Tämä vastaa aikaisempia tutkimustuloksia (Työsuojelurahaston projekti 

#109257). Seuraavaksi kehitimme algoritmin, joka käytti laskettuja kaistasijaintisignaaleja 

varoittaakseen kaistalta poikkeamisista kolme sekuntia etuajassa. Herkkyys oli 47 % ja 

tarkkuus oli 71 %. Korrelaatio laskettujen ja mitattujen kaistasijaintisignaalien välillä oli 

pienempi kuin aikaisemmassa tutkimuksessamme (r≥0.78 [9]), mutta herkkyys 

kehittämällemme kaistavahtialgoritmille oli suurempi kuin nykyisten video-pohjaisten 

kaistavahtien saavuttama 40 % herkkyys. Yhteenvetona tämä tarkoittaa sitä, että tuotimme 

ensimmäiset tieteelliset todisteet sille, että kaistalta poikkeamisia voidaan havaita 

rattisignaalista. Seuraavaksi meidän tulisi kokeilla, onko ehdotettu menetelmä kenttä-

kelpoinen. 

 

Ennustaaksemme kaistalta poikkeamisia rattisignaalista koulutimme ensin yhden QNN:n 

kahdella piilotetulla kerroksella ennustamaan rattisignaalia eteenpäin yhdellä aikapisteellä. 

Koska alinäytteistimme rattisignaalia 10 Hz:iin QNN ennusti 0,1 s eteenpäin. Seuraavaksi 

käytimme ennustettua signaalia kaistasijainnin laskemiseen siirtofunktiolla – korrelaatio 

lasketun ja mitatun kaistasijaintisignaalin välillä oli r=0.73 (n=1). Yhteenlaskettuna 

näytimme ensimmäiset tieteelliset todisteet sille, että QNN:illä voidaan ennustaa kaista-

sijaintisignaalia. Seuraava tehtävämme on kasvattaa ennustushorisonttia. 

 

Yhteenveto: 

1) Tuotimme ensimmäinen näyttö, että suhteellisen matala LF/HF suhde edeltää pientä 

kasvua SSQ-tuloksissa. Tämä tulos perustuu koehenkilöryhmään missä selväpiirteistä 

simulaattori-pahoinvointia ei esiintynyt. Ennen kuin voimme tehdä johtopäätöksiä, meidän 

tulisi validoida tulokset vapaaehtoisilla jotka selvästi potevat simulaattoripahoinvointia. 
 

2) Kehitimme myös algoritmin joka havaitsee kaistalta poikkeamisia rattisignaalista 

suuremmalla herkkyydellä kuin nykyiset video-pohjaiset kaistavahdit (47 % vs. 40 %). 
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Seuraava tehtävämme on lisätä menetelmän herkkyyttä. Koska menetelmä kehitettiin 

laboratorio-olosuhteissa, meidän tulisi validoida sen kenttäkelpoisuus. Tällöin olemme 

varustaneet tieliikenteen ensimmäisellä luotettavalla autopohjaisella kaistavahdilla. 

 

3) Lopuksi osoitimme, että QNN pystyy ennustamaan rattisignaalia 0,1 s eteenpäin 0,7 % 

virheellä (eli isolla tarkkuudella), ja että ennustettua signaalia voidaan käyttää laskemaan 

kaistasijaintia. Jos pystymme kasvattamaan ennustushorisonttia, meillä on tarvittavat 

osatekijät ennustavalle kaistavahdille. 
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SUMMARY 
 

 

 

 

 

 

Work- and traffic safety officials have long acknowledged the need for countermeasures 

against drowsy driving, a main contributor to road crashes [1, 2]. In Finland, even 40% of 

polled long-haul truck drivers and 21% of polled short-haul truck drivers report difficulties 

staying awake during 20% of their journeys. More than 20% of the polled long-haul drivers 

admit to nodding off at the wheel at least twice [3].  

 

A drowsy driver makes less frequent but large corrective steering wheel movements [4, 5], 

which increases the risk for running off the road [6, 7]. So far, current in-car lane departure 

warning (LDW) systems only recognize 30-40% of all imminent lane departures, because 

they are video-based and often loose data [8]. We recently showed that the car’s transfer 

function provides a way to transform the steering wheel signal into a lane position signal 

[9]. An LDW system that relies on this approach would be more robust and should detect 

lane departures with higher sensitivity than the current video-based systems do. 

 

Whether an LDW system truly prevents accidents by detecting lane departures is unknown 

[8, 10, 11]. A technology that predicts lane departures would give the driver time to safely 

counteract an upcoming event. So far researchers have used a combination of car-based 

and physiological signals continuously recorded while driving to predict drowsiness even 

five minutes in advance [12]. However, a system that relies on physiological metrics may 

be obtrusive and prone to data loss. Quantum Neural Networks (QNN) are used to predict 

e.g. transient fluctuations in the stock market (human action) and sunspot activity (natural 

action) [13-15], and may also be used to predict lane departures from the steering wheel 

signal.  

 

For institutions that train professional drivers, simulator-based training is important 

because it allows emulating and analyzing dangerous situations, like e.g. what to do when 

the bus hits an icy spot [16]. While simulators are valuable for education, instructors must 

be prepared for students who suffer from simulator sickness [17]. It leaves a stigma which 

limits the effectiveness of training and increases the student dropout rate [18]. Catching a 

student prone to simulator sickness would enable the instructor to end the training session 

before the student experiences simulator sickness – for susceptible students this reflects 

positively on training quality and quantity. As heart rate variability (HRV) is a marker of 

stress, it could be used to predict simulator sickness. 

 

The project (2014-2015) had three aims: 1) to predict simulator sickness and to 2) detect 

and 3) predict lane departures from the steering wheel signal. We enrolled 34 students at 

Työtehoseura’s branch of logistics and vehicles. They drove in Työtehoseura’s two high-

fidelity driving simulators at 80 km/h for 55 minutes every third hour during 36 hours of 

sustained wakefulness – collectively covering 31200 km of driving. During the driving 

sessions we logged the simulators’ steering wheel and lane position signals at 60 Hz. We 

also recorded the participants’ electrocardiogram (ECG) at 500 Hz. Immediately before 

and after each driving session the participants took a 10-minute Psychomotor Vigilance 

Test (PVT) and rated their symptoms of nausea, oculomotor discomfort, and disorientation 

on the Simulator Sickness Questionnaire (SSQ) while we recorded their ECG. 

 

With 34 participants that collectively drove 31200 km in high-fidelity truck simulators, 

we showed that one can detect lane departures from the steering wheel signal, and that 

post-drive simulator sickness scores correlate with pre-drive heart rate variability data. 
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We are the first to try to use quantitative ECG to predict which participants will experience 

simulator sickness, and we focused on data that was recorded during the first three test 

sessions when they still were rested (to avoid that sleepiness confounded their SSQ-

ratings). N=15 participants scored higher on the SSQ after the drives, whereas the other 

n=19 participants did not. During the pre-drive PVT and SSQ tests, the ratio of the low- 

and high frequency components in the ECG signal (LF/HF ratio) [30] was lower in the 

participants who scored higher on the SSQ after the drive. While the difference between 

the two groups (n=15 and n=19) was not statistically significant, it indicates that the LF/HF 

ratio may be a potent predictor of simulator sickness. The rationale is that overall, none of 

the participants scored high on the SSQ during the first three test sessions – the effect that 

the LF/HF ratio detected in the n=15 drivers was mild (i.e. none of them stopped driving 

because of simulator sickness). Next, we should validate the parameter with volunteers 

who express simulator sickness and develop a user-friendly interface for the instructor. 

The fact that none of the participants scored high on the SSQ when they were rested also 

means that institutions that train professional drivers could use our set-up to ease their 

students into simulator-based training. Specifically, starting the training in a highway 

scenario would help the student adapt to the simulated environment. 

 

To detect lane departures from the steering wheel signal, we first determined the 

simulators’ transfer functions and used them to derive the lane position signals from the 

recorded steering wheel signals. The Pearson correlation between the derived and recorded 

lane position signals was r=0.48 (n=3151). This is in line with our previous findings 

(Finnish Work Environment Fund project #109257). Next, we developed an algorithm that 

used the derived lane position signal to warn about lane departures up to three seconds in 

advance. The sensitivity was 47% and the specificity was 71%. The correlation between 

the derived and recorded lane position signals was lower than in our previous research 

(r≥0.78 [9]), but the sensitivity of the new LDW algorithm was higher than the sensitivity 

that the current video-based LDW systems achieve (40%). Taken together this means that 

we showed the first scientific proof that lane departures can be detected from the steering 

wheel signal. Next, we should test whether the proposed system is field-capable. 

 

To predict lane departures from the steering wheel signal, we first trained a QNN with two 

hidden layers to predict the steering wheel signal one data point ahead. Because we down 

sampled the steering wheel signal to 10 Hz the QNN predicted 0.1 s ahead. Next, we used 

the predicted signal to derive the lane position signal with the transfer function approach – 

the correlation between derived and measured lane position signals was r=0.73 (n=1). 

Taken together we showed the first scientific proof that QNNs can predict the lane position 

signal. Our next task is to increase the prediction horizon. 

 

In conclusion:  

1) We showed the first results that a low pre-drive LF/HF ratio correlates with a small post-

drive increase in SSQ scores. This finding was based on a group of people with no 

pronounced simulator sickness, so before any firm conclusions can be drawn, we need to 

replicate the results with volunteers who clearly express simulator sickness. 

 

2) We developed an algorithm that detects lane departures from the steering wheel signal 

with higher sensitivity than the current video-based systems do. Our next task is to increase 

the sensitivity. Because the method was developed from data recorded in a laboratory-

environment we also need to test whether it works in the field. If it does, we have provided 

road transportation with the first LDW system that is based on a robust car-based signal. 
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3) Finally, we showed that QNNs can predict the steering wheel angle 0.1 s ahead with 

0.7% error (i.e., high accuracy) and that the predicted signal can be used to derive the lane 

position signal. If we can increase the prediction horizon we have the necessary elements 

for a predictive car-based LDW system. 
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1  AIMS 
Our long-term goal is to develop sensor-and-signal-processing technology that detects and 

predicts drowsiness-related lane departures from the steering wheel signal with high 

sensitivity and specificity. This would be a robust and unobtrusive technology that would 

give the driver time to anticipate and safely counteract upcoming events and to avoid an 

accident. We also develop a signal-processing technology to predict the onset of simulator 

sickness. This would give the instructor time to end a training session before the student 

experiences simulator sickness symptoms. 
 

Our specific study aims to test our hypotheses and meet our overall aim were: 
 

Aim 1: To predict simulator sickness while driving in a high-fidelity driving 

simulator. 

Rationale 1: Heart rate variability (HRV) is a marker of stress and we expect that 

simulator sickness decreases HRV. 

Deliverable 1: We identified a quantitative tool that predicts simulator sickness, and 

we determined how much in advance it can predict the onset. 

Success criteria 1: The tool predicts onset of simulator sickness before the driver 

perceives the symptoms (which usually occurs during the first 30 

minutes if the driver is susceptible [18]). 
 

Aim 2:  To detect drowsiness-related lane departures from the simulator’s 

steering wheel. 

Rationale 2: The transfer function (TF) approach suffers no data loss due to 

invisible lane markers. It provides lane-related metrics of driving 

performance from the steering wheel signal. 

Deliverable 2: Quantitative algorithm that reliably detects drowsiness-related lane 

departures in a non-invasive manner. Knowledge whether the TF-

approach is a feasible starting point for a non-video-based lane 

departure warning system. 

Success criteria 2:  The Pearson correlation between the calculated and recorded lane po- 

sition is r≥0.78 [9]. The sensitivity of the detection algorithm is 40% 

[8]. 
 

Aim 3: To predict drowsiness-related lane departure from the simulator’s 

steering wheel signal with Quantum Neural Networks (QNNs). 

Rationale 3: QNNs can predict transient fluctuations in real life (stock market and 

sunspot activity).  

Deliverable 3:  Mathematical model predicting drowsiness-related lane departure 

from the steering movements that the individual driver makes.  

Success criteria 3:  The sensitivity of the prediction model is 40% [8]. 
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2  MATERIALS AND METHODS 
 

2.1  Participants 
N=34 students at Työtehoseura’s branch of logistics and vehicles participated in our study 

(Table 1). The inclusion criteria were: good health (by questionnaire); good sleep (by ques- 
 

Table 1.  Participants during the weeks 37-43. 

a The condition was either driving all sessions in night-
time scenarios or in scenarios with clear daylight 
b All drivers were men: one aborted after 21 hours into 
the experiment, another after 24 hours. 
c All but two drivers were men: one aborted after 24 
hours into the experiment, another after 27 hours. 

Condition a N (count) Age (mean ± SD, range) 

Night b 16 30 ± 12 (18-55) 

Day c 18 34 ± 11 (19-52) 

 34 32 ± 12 (18-55) 

tionnaire, actigraphy, sleep diary); ability 

to abstain from caffeine for 37 hours; 

body mass index between 22–30; and no 

medication affecting sleep or sleepiness. 

The participants arrived and departed 

from the test site by taxi. They gave their 

written informed consent, and we 

compensated them for their time. The 

University of Helsinki Institutional 

Review Board approved the study in 

June 2013. 
 

2.2  Protocol 
On Monday the participants took a test session to familiarize themselves with the 

procedures (Table 2). We asked them to arrive rested to the sleep deprivation experiment 

on Friday morning. Therefore, we required ten hours time in bed per night (21:00-7:00, 

Mon-Fri), which we checked with at-home sleep diaries and wrist-worn actigraphs. 
 

On Friday, the participants woke up at 6:00 and arrived at the test site by 7:30. We checked 

their compliance with our sleep-requirements and then we served them breakfast. At 8:45 

the first test session started (Table 2). The sessions repeated every third hour until 19:15 

on Saturday when the participants left for recovery sleep at home.  
 

Smokers (N=12) could have a cigarette immediately after a session (in a ventilated room 

at the test site). During the experiment we served 12 standardized meals (averaging 275 

kcal, totaling 2200 kcal/24 hours) immediately after each session. No caffeine was 

allowed. Between the sessions the participants had 90 minutes “own time” during which 

they could read, play cards and board games, watch movies, and converse with each other 

in the common room. The light level in the common room was 52 ± 4 lux and the 

temperature was 23 ± 1 °C. An experimenter monitored the participants continuously to 

ensure that they stayed awake.  
 

Työtehoseura has two high-fidelity driving simulators. Therefore each study run could 

accommodate six participants and therefore we shifted the experimental protocol by one 

hour for participants 3-4 (wake up at 7:00 on Fri) and by two hours for participants 5-6 

(wake up at 8:00 on Fri). 
 

Table 2.  Experimental protocol progressing from left to right. Rows represent a measurement (see section 
2.3). Between 8:45 on Friday and 19:15 on Saturday we recorded electrocardiogram (ECG) nonstop. Starting 
9:00 on Friday, we administered a 55-minute driving session every third hour. During each driving session 
we recorded the drivers’ eye lid movements (E). Fifteen minutes before a driving session we recorded the 
Karolinska Sleepiness Scale (KSS), administered a 10-minute psychomotor vigilance test (PVT), and recorded 
the simulator sickness questionnaire (SQQ). Immediately after a driving session we recorded SSQ, KSS, PVT. 

Test session   1 2 … 12 

Time of day 6 7 8 9 10 11 12 13  17 18 19 

Hours in study 0 1 2 3 4 5 6 7  35 36 37 

Driving+E    *   *    *  

KSS+PVT+SSQ   *  * *  *  *  * 

ECG   * * * * * *  * * * 
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2.3  Measurements 
Each test session included a computerized version of the Karolinska Sleepiness Scale 

(KSS, [19]); a 10-min Psychomotor Vigilance Test (PVT, [20]); a computerized version of 

the Simulator Sickness Questionnaire (SSQ, [21]); a 55-min driving session on 

Työtehoseura’s high-fidelity driving simulator; another SSQ, KSS, and PVT. Thus, each 

driving session was preceded and followed by a battery of independent, established indices 

of fatigue [22]. During each driving session we recorded the driver’s eyelid movements 

and 2-lead electrocardiogram (ECG). 
 

2.3.1  Subjective sleepiness, objective sleepiness, and simulator sickness 
As an independent measure of subjective fatigue, we used the Karolinska Sleepiness Scale 

(KSS), where the participant rates the feeling of sleepiness during the last 5 minutes from 

1 (very alert) to 9 (very sleepy) [19]. 
 

As an independent measure of objective fatigue, we used the Psychomotor Vigilance Test 

(PVT). The PVT is a simple reaction time task with high stimulus density, which measures 

sustained attention [20]. The primary outcome metric is the number of lapses, defined as 

reaction times exceeding 500 ms.  
 

As an independent measure of subjective simulator sickness, we used the Simulator 

Sickness Questionnaire (SSQ), where the participant rates 16 symptoms related to nausea, 

oculomotor disturbances, and disorientation on a 4-point scale from 0 to 3. The primary 

outcome metric is the total score [21]: 
 

 𝑇𝑆 = 𝑁 × 9.58 + 𝑂 × 7.58 + 𝐷 × 13.92 × 3.74,  (1) 
 

where N, O, and D are the marks on the nausea, oculomotor, and disorientation scales. 
 

2.3.2  Driving 
During every driving session, the participants drove a simulated truck in a fixed-base, high-

fidelity driving simulator (Fig. 1). The simulator employs hardware and software to 

realistically simulate the mechanics and driving characteristics of a real truck.  
 

The simulator sampled steering wheel angle , lateral lane position x, vehicle pitch φ, and 

driving speed v at a variable rate above 80 Hz, depending on the amount of computation 

required to produce the simulated scenery at a given moment. A separate computer with 

the software RTMaps (Intempora) logged time stamps and data from the simulator (Fig. 

2). Offline we down sampled the signals to 60 Hz. 
 

The simulated driving track comprised a network resembling Finnish uneventful rural 

roads with no other traffic (Fig. 3). Because each driver completed 12 driving sessions, we 

defined 12 combinations of starting points and driving directions along the track and 

randomized their order to the driving sessions. 
 

The first 16 participants drove all 12 sessions in a nighttime scenario where the average 

illuminance at the drivers’ eye level was 0.9 lux (simulator 1) and 1.4 lux (simulator 2). 

The next 18 participants drove all sessions in daylight clear view where the average 

illuminance at the drivers’ eye level was 3.0 lux (simulator 1) and 4.9 lux (simulator 2). 

The road condition on the road was full friction. We instructed all participants to keep the 

posted speed limit 80 km/h, stay in the lane, and keep their hands on the steering wheel, 

while keeping the cruise control and radio off. 
 

Our database covers 374 hours and 31200 km of driving (34 drivers, 12 driving sessions, 

55 min/session, approximately 80 km/hour). Along the 110 km track there were 21 

straightaways that were 400 m or longer totaling 31 km (Fig. 3).  



 

4 

 

 

Fig 1.  The simulator comprised parts of a real 
truck. The scenery was projected on screens 
covering the wind shields (SIMRAK, Tampere). 

 

Fig 2.  Computer time stamps incoming signals from 
the attached devices. ECG is electro-cardiogram 
(section 2.3.3) and VOG is video-oculography 
(section 2.3.4) 

    
Fig 3.  Map of the 110 km simulated driving track. 
Colour indicates m/20 m (red means incline). The 
black numbered ovals show 21 straightaways that 
were longer than 400 m. 

2.3.3  Electrocardiograms 
During every driving session, we recorded the participants’ 2-lead ECG with eMotion 

Faros 180° (Mega Electronics Ltd) and Ambu® BlueSensor VL electrodes (Ambu A/S) at 

500 Hz.  
 

Before the first driving session, we cleaned the skin area over the collarbone and at the end 

of the ribcage with ethanol wet wipes and attached the electrodes according to the device 

manufacturer’s instructions. We checked the signal quality by visual inspection (the device 

worked in online Bluetooth mode). If the R-peaks in the QRS-complexes were difficult to 

recognize, we replaced the electrodes. Otherwise we set the device to data logging mode.  

 

Fig. 4.  Measured ECG signal with synchroniza- 
tion signals (the zoom shows QRS complexes). 

We did not remove the electrodes during the 

sleep deprivation experiment, unless we 

found problems with electrode adhesion or 

signal quality.  
 

To allow post-hoc synchronization of the 

recorded ECG-signals with the recorded 

driving data, we connected a customized 

device to the computer that ran the RTMaps 

software and that logged the time stamps 

and data from the driving simulator (Fig. 2). 

Before a participant climbed into the 

simulator, we disconnected the eMotion 

Faros 180° from the electrodes and connec 

ted it to the customized device via an USB 

cable the device used a development board, 

Arduino UNO R3, Arduino Mega). The cus- 
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tomized device sent a “0” to RTMaps, a 5 V square wave signal to the eMotion Faros 180°, 

and a “0” to RTMaps. Then we reattached the eMotion Faros 180° to the participant’s 

electrodes. We repeated the procedure after the driving session (Fig. 4). Post hoc we 

matched the signal that the eMotion Faros 180° recorded and the time stamps of the serial 

transmissions that the RTMaps recorded. Figure 4 shows an example of recorded ECG and 

square wave synchronization signal data. 
 

2.3.4  Eyelid movements 
During every driving session, we recorded the driver’s eyelid movements at 120 Hz with 

a video-oculography (VOG) system (AntiSleep, SmartEye Ab). We mounted the system 

on the dashboard in front of the driver (Fig. 5). The system tracks facial features with an 

infrared camera and two infrared light sources set in a specific geometry. This eliminates 

the effect of external light sources on the image. To allow post hoc synchronization of the 

 
Fig. 5.  AntiSleep camera on the dashboard. 
Depending on the height of the driver, the camera 
was 20-40 cm below eye level, angled upward 
towards the driver's face. 

 
Fig. 6.  Good quality eye tracking data (upper) and 
bad quality eye tracking data (lower). 

recorded VOG signals with the recorded 

driving data, we connected the computer 

running the VOG system to the computer 

that ran the RTMaps software and that 

logged the time stamps and data from the 

driving simulator (Fig. 2). The VOG data 

was sent on-line to the RTMaps computer. 
 

Immediately before a driver commenced a 

driving session, we manually adjusted the 

camera elevation, focus, and aperture. Then 

we established a facial profile for him/her 

during a short (~1 min) training session. 

This optimized the computer vision 

algorithm, which calculated e.g. head 

position, head rotation, eye positions, eyelid 

openings, and gaze direction from the image 

data that the camera recorded. The computer 

vision algorithm also estimated the signal 

quality of each of the calculated metrics on 

a relative scale from zero to one. 
 

2.3.4.1  Data quality control 
Figure 6 shows examples of eye tracking 

data where the signal quality was high and 

low. Low signal quality probably stem med 

from moments when the driver looked away 

from the camera, negotiated a curve, or e.g. 

rubbed his/her eyes. To generate high signal 

quality the computer vision algorithm needs 

the face to be clearly visible and in the “cor-

rect” angle. For the purpose of further data  

analysis we developed an algorithm that identified signal por-tions with high signal quality 

according to the following criteria: 

 

1. VOG-signal recorded on a straightaway. 

2. Quality of eyelid opening and gaze direction > 0 (provided the AntiSleep software). 

3. Estimated quality of head orientation > 0.2 (provided by AntiSleep software). 
 

These requirements excluded 60% of the VOG data from further analysis, but this did not 

skew the results with respect to drivers or sleep deprivation (by manual inspection). 
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2.4  Analysis 
 

2.4.1  Subjective sleepiness, objective sleepiness, and simulator sickness 
To evaluate the effects of light, time awake, and time on task on the drivers’ subjective and 

objective sleepiness as well as on their symptoms of simulator sickness, we performed 

mixed-effects analysis of variance (ANOVA) with conditions (night-time vs. daytime), 

sessions (1 to 12), and pre/post drive measurement as fixed effects, and participants as 

random effect on the intercept. For our analyses we used IBM SPSS Statistics 23. 
 

2.4.2  Predicting simulator sickness from heart rate variability (Aim 1) 
We used cross correlation to locate the synchronization signals in the ECG signal (Fig. 4). 

We excluded ECG signals that lacked synchronization signals from further analysis 

(signals from 15 test sessions). We aligned the ECG signals with the simulator data (using 

the synchronization timestamps that RTMaps recorded). We used Kubios HRV [29] to 

detect R-peaks in the raw ECG signals and to quantify RR-interval time series  (Fig. 7).  
 

 
Fig. 7.  RR-intervals are the timespans between 
consecutive R-peaks in the ECG signal. 

When we analyzed HRV during driving, 

we used data where the driving speed v > 

50 km/h (including straightaways and 

curves). When we analyzed HRV during 

the pre- and post drive PVT+KSS+SSQ 

sessions, we used data between the 

synchronizations made on the “PVT” 

computer (Fig. 4). The selected signals 

were divided into 5 minute epochs with 

99% overlap. For each epoch we compu-

ted several HRV parameters (defined in  

[30]:Mean RR interval, SDNN (Standard deviation of RR-intervals), RMSSD, and pNN50. 

After linearly detrending the RR-intervals we estimated the power spectral density (PSD) 

using the Lomb-Scargle periodogram method and computed the HRV parameters: VLF 

power, LF power, HF power, and LF/HF power ratio by integrating the PSD across each 

frequency band. Finally, we averaged each parameter across the data recorded in the pre-

drive PVT+KSS+SSQ session, the driving session, and the post-drive SSQ+KSS+PVT 

sessions. For our computations we used MATLAB R2014b.  
 

To evaluate whether the HRV parameters predicted simulator sickness, we only considered 

data recorded during the first three driving sessions. The rationale is that sleepiness is a 

confounder in simulator sickness, and until the third driving session the drivers were not 

affected by sleepiness (Fig. 14). Next, we identified drivers whose SSQ total score had 

increased form the pre-drive session to the post-drive session (n=15). The rest of the drivers 

comprised the control group (n=19). We used a two-tailed Student’s t-test to evaluate 

whether the two groups differed from each other during the pre-drive sessions.  
 

2.4.3  Driving 
Along the 110 km track there were 21 straightaways that were 400 m or longer, totaling 31 

km (Fig. 3). In our analyses of driving performance we used the signals recorded while 

driving on these straightaways. 
 

2.4.3.1  Deriving lane position from steering (Aim 2) 
To derive the lane position signal from the steering wheel signal we assumed that the 

simulated truck represented a linear time-invariant system and that it moved with constant 

speed. Then, in frequency space, the transfer function (TF) between the Laplace transforms 

of the steering wheel angle (t) and the lateral lane position signal x(t) is:  
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  𝑇𝐹𝑚 =
𝑃𝑛(𝑠)

𝑄𝑚(𝑠)
,    (2) 

 

where Pn and Qm are polynomials of s with the degree n and m. Let vector C be the 

(n+1)+(m+1) coefficients of both P and Q, where m is the model order (i.e., degree of the 

denominator polynomial). We determined the coefficients C separately for model orders 1 

to 20. We used Matlab's system identification toolbox to determine the coefficients. Briefly, 

the toolbox uses the instrument variable method [23] to initialize an estimation of the 

coefficients, and the Gauss-Newton algorithm [24] to update the estimate. We set the 

algorithm to repeat the update ten times or until the least-squares error between the current 

update and the next iteration was 0.01%. We used the training set data (section 3.4.3.4) to 

derive the TFm(s), 𝑚𝜖{1, … ,20} separately for the two simulators. 
 

Equation 2 assumes that the system output is zero at time zero. However, this is not true in 

any of our simulations (it would mean that the vehicle was precisely in the center of the 

lane without weaving). Therefore, TFm had to be multiplied by Fm(s), which represents the 

initial conditions. We estimated Fm(s) using Newton’s method. With the initial condition 

at hand, we derived a simulated lane position signal �̂�𝑚(𝑡) from the Laplace transform of 

the steering wheel angle (t): 
 

  �̂�𝑚(𝑡) = 𝔏−1{𝑋(𝑠)}(𝑡) = 𝔏−1{𝛩(𝑠)𝑇𝐹𝑚(𝑠)𝐹𝑚(𝑠)} (3) 
 

We used a validation set to determine which model order m (between 1 and 20) produced 

the best lane position signal (i.e., the highest correlation between the derived and measured 

lane position signals). The validation set comprised one randomly chosen driving session 

in the test data. The validation set comprised steering- and lane position signals from 19 

straightaways covering 29 km. We then computed the Pearson correlation between the 

derived lane position signal (eq. 3) of the m:th order and the lane position signal that the 

simulator recorded (i.e., our gold standard). We chose the model order with the highest 

correlation. 
 

2.4.3.2  Detecting lane departure from steering (Aim 2) 
To detect lane departures from the steering wheel signal we needed an indicator of lane 

departures. We computed a driver’s preferred position in the lane, y0, by averaging the lane 

position during the first 5 minutes of driving, when the driving speed v exceeded 60 km/h: 
 

  𝑦0 =
∑ 𝑦(𝑡)

𝑡0+𝑁
𝑡=𝑡0

𝑁+1
,   (4) 

 

with t0 such that v(t)>60km/h, given t>t0, and N=18000. The lane was 3.5 m wide and the 

simulated truck was 2.5 m wide. This gave the driver 0.5 m leeway on each side of the 

vehicle (assuming that the truck was exactly in the middle of the lane). This implies that 

an average deviation of 0.2 meters from y0 for a time period t0 is a suitable indicator of an 

upcoming lane departure. We computed: 
 

  𝑦𝐿𝐷(𝑡) =
∑ 𝑦(𝑖)𝑡

𝑖=𝑡−𝑡0

𝑡0
,   (5) 

 

and if:  

  |𝑦0 − 𝑦𝐿𝐷| > 0.2 𝑚,   (6) 
 

it indicated a lane departure. To identify the optimal time period t0, we estimated 𝑦𝐿𝐷 (eq. 

5) for different time periods t0 = {1,2,3,4,5} sec and applied it to our lane departure 

detection algorithm (eq. 5). We chose the t0 that rendered the highest sensitivity and 

specificity. We used the test set data (section 2.4.3.4) to detect lane departures from the 

steering wheel signal (eqs. 3, 5, 6). To evaluate how many of the actual lane departures our 
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method detected, we used the following criterion: the algorithm warns about an upcoming 

lane departure al least three seconds before a true departure (section 2.4.3.3) happens. 
 

2.4.3.3  True lane departures (gold standard) 
To validate our method (eq. 6) we needed to identify the lane departures from the lane 

position signal that the simulator recorded (i.e., our gold standard). We defined lane 

departures as events where any part of the vehicle was outside the lane markings in the 

middle or on the right-hand side of the road [28]. We calculated the positon xi(t) of each 

corner i of the vehicle at time t: 

  𝑥𝑓𝑟𝑜𝑛𝑡 𝑟𝑖𝑔ℎ𝑡(𝑡) = 𝑥(𝑡) +
𝑤

2
cos 𝜑, 

  𝑥𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑓𝑡(𝑡) = 𝑥(𝑡) −
𝑤

2
cos 𝜑, 

  𝑥𝑏𝑎𝑐𝑘 𝑟𝑖𝑔ℎ𝑡(𝑡) = 𝑥(𝑡) + 𝑙 sin 𝜑, 

  𝑥𝑏𝑎𝑐𝑘 𝑙𝑒𝑓𝑡(𝑡) = 𝑥(𝑡) − 𝑙 sin 𝜑,  (7) 
 

where x is the position in the lane of the center of the front of the truck in meters, φ is the 

yaw pitch of the truck in degrees, l is the length of the vehicle (meters), and w is the width 

of the vehicle (meters) (Fig. 8). Finally, we identified a lane departure if: 
 

  xi(t) < -1.75 or xi(t) > 1.75 , while  

xi(t-1) >-1.75 and xi(t-1) < 1.75   (8) 
 

where i represents the four corners of the vehicle in eq. 7 (Fig. 8). Figure 9 shows the 

number of lane departures.  
 

2.4.3.4  Training and test sets 
As training set we used the driving data recorded on the straightaways during the fourth 

driving session. The rationale for this choice was that on average, the drivers exhibited the 

least number of lane departures in this session (Fig. 9). As test set we used the driving data 

recorded on the straightaways during the rest of the driving sessions. Hence, the training 

set comprised 1000 km of driving (34 drivers, 1 driving session, 31 km) whereas the test 

set comprised 12000 km of driving (34 drivers, 11 driving sessions, 31 km). 
 

 
Fig. 8.  Variables used to calculate lane departures. 

 
Fig. 9. Number of lane departures for drivers in 
the night-time (blue circles) and daytime (red 
circles) driving scenarios as a function of time 
awake. Mean ± SEM. 

 

2.4.3.5  Quantum Neural Networks (Aim 3) 
We used a time delayed feed-forward Quantum Neural Network (QNNs, e.g. [25]) to 

predict steering wheel movements from the steering wheel signal and then we used the 

predicted signal to derive the lane position signal (section 2.4.3.1). A qubit neuron (Fig. 

10) can perform quantum operations like superposition and interference. It has input nodes 

to which information is fed, and an output node which gives out a value between 0 and 1. 
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When qubit neurons are combined into networks (Fig. 11) they can perform complicated 

functions like prediction. To train the network, we fed data from a training set to the 

network inputs, compared the network output to the desired output, and updated the neural 

parameters so that the output matched the desired output. In a feed-forward network all 

neurons feed information to the next layer and there is no feedback. In a time delayed 

network the inputs to one neuron in the input layer is a data point from the preceeding time 
 

 
Fig. 10.  A qubit neuron in the hidden or output layer. 
The inputs to the qubit neuron are outputs from the 
previous layer. The qubit neuron performs phase 
rotation (eq. 11), controlled phase reversal (eq. 12), 
and conversion back to a phase state (eq. 13). 
 

 
Fig. 11.  A Quantum Neural Network combines 
several qubit neurons. The steering wheel signal’s 
data points from the current time t and 14 previous 
time steps t-1, t-2, ...t-14 are fed to 15 qubit neurons 
in the input layer. The output layer has one neuron 
that predicts the steering wheel signal at time step 
t+1. 

step.Our QNN had an input layer with 15 

qubit neurons, one hidden layer with 40 

qubit neurons, another hidden layer with 

20 qubit neurons, and an output layer with 

one neuron (Fig. 11). The number of 

neurons in the hidden layers were chosen 

based on the fact that a greater number of 

neurons in a hidden layer allows more 

complexity, and therefore possibly smaller 

errors, but at the cost of longer computing 

times especially during training. In the first 

hidden layer we wanted at least twice as 

many neurons as in the input layer, and 

since the output layer had only one neuron, 

the second hidden layer detected general 

features from the first hidden layer and 

then grouped them to improve the 

efficiency of the output neuron. 
 

We scaled the steering wheel signal to the 

interval [0,1], which is required for the 

input layer neurons. The steering wheel 

movements on straightaways were very 

small (approximately [-0.01, 0.01]), so 

before feeding the signal to the QNN we 

multiplied it by 20 and then added 0.5. 

This scaling introduced no relative 

differences between the signals.  
 

Neurons in the input layer converted the 

steering wheel signal into quantum states 

with a phase value φ in the range [0, π/2]: 

 

𝑧𝑖𝑛𝑝𝑢𝑡 = 𝑓 (
𝜋

2
∙ 𝑖𝑛𝑝𝑢𝑡),   (9) 

 

where the mapping function f was: 
 

  𝑓(𝑥) = 𝑒𝑖𝑥     (10) 
 

Outputs z from each input layer neuron k was then fed as an input to each neuron in the 

first hidden layer (Fig. 10). Hidden layer neurons first performed a phase rotation: 

  𝑢 = ∑ zinput,k ∙ f(θk) − f(λ)
𝐾

𝑘
  (11) 

 

The sum over all k:s was the sum of all inputs from the previous layer (zinput,k) multiplied 

by each individual weight θk, which were also mapped onto the complex state space (eq. 

10). A threshold value f(λ) was subtracted to adjust the neuron to some operating level. λ 
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was determined during training. After the phase rotation, the neuron’s phase angle was 

adjusted roughly from the phase rotation by: 
 

  𝑦 =
𝜋

2
∙ 𝑔(𝛿) − arg (𝑢),   (12) 

 

where g was the sigmoid function, δ was a reversal parameter and arg() was the argument 

(phase angle) of the complex value u. The reversal parameter determines how (eq. 12) 

adjusts the phase angle of u to a real valued angle. The obtained value y was then converted 

back to a phase state through: 
 

  𝑧ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑓(𝑦)   (13) 
 

and zhidden was fed to the next layer as an input. The neurons in the output layer performed 

the same function as those in the hidden layer (eq. 11-13), but in addition, the output was 

converted back to a real value between [0,1]: 
 

  𝑜𝑢𝑡𝑝𝑢𝑡 = |𝐼𝑚(𝑧)|2    (14) 
 

The network was trained by back propagation with gradient descent, which calculates the 

error E between network output and desired output for each time step: 
 

  𝐸 =
1

2
∑ (𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2𝑇

𝑡    (15) 
 

The sum over t is the sum over all the points of the predicted signal. The desired output is 

the actual signal in the training set. Having calculated the error E, the adjustable parameters 

of each neuron, the weights 𝜃𝑘, the threshold λ, and the reversal parameter δ, were adjusted 

according to the gradient descent back propagation: 
 

  𝜃𝑘
𝑛𝑒𝑤 = 𝜃𝑘

𝑜𝑙𝑑 − 𝜂
𝜕𝐸

𝜕𝜃𝑘
,  

𝜆𝑛𝑒𝑤 = 𝜆𝑜𝑙𝑑 − 𝜂
𝜕𝐸

𝜕𝜆
,  

  𝛿𝑛𝑒𝑤 = 𝛿𝑜𝑙𝑑 − 𝜂
𝜕𝐸

𝜕𝜆
   (16) 

 

η is the learning rate, a value usually between 0.1 and 0.8, that determines how strongly 

the new value is affected by the partial derivative. A higher learning rate causes the network 

to fluctuate more, and longer, before reaching a desired error level, but it also ensures that 

the network parameter space is explored more thoroughly. A lower learning rate allows the 

network to approach optimal performance faster than a higher η does, but it involves the 

risk of the network converging to a local, but non-optimal, minimum as only a small part 

of the parameter space is explored. We chose η = 0.6 to allow large exploratory learning 

by the QNN because steering wheel signals have a transient nature.  
 

2.4.3.6  Predicting steering (Aim 3) 
To predict lane departures we first used the QNN to predict steering, and then used the 

transfer function to derive the lane position signals (section 2.4.3.1). We down sampled the 

steering wheel signals to 10 Hz, because the QNNs require even sampling frequency and 

because it reduces computational cost.  
 

Our training set comprised data recorded with n=15 drivers in the night-time condition and 

1265 km, or 15 % of the 8432 km of straightaway driving from all drives. For each of the 

15 drivers we randomly chose driving sessions and straightaways to cover 15% of the total 

amount of data (evenly distributed between driving sessions and straightaways). With the 

training set and supervised training of the QNN we determined the parameters of each 

neuron in the network (eqs. 15, 16): weights 𝜃𝑘, threshold λ, and reversal parameter δ.  
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Our test set comprised 7167 km (all straightaway data that was not used in the training set). 

We used 15 previous time steps, i.e. 1.5 sec of driving, to predict the next one (eqs. 9-14). 

We chose 15 previous time steps because it was a fairly small number of data points that 

still worked well when we predicted a sinusoidal “dummy signal” with 10 Hz sampling 

frequency. To test how well the QNN predicted the steering wheel signal, we computed the 

total root-mean-square error (RMSE) for all predicted signals and also for each driver and 

each driver as a function of time awake. The RMSE is the average error between the 

predictions and the measured signals. 
 

With the predicted steering wheel signal at hand, we fed it into the simulators’ transfer 

functions to derive the lane position signals (section 2.4.3.1). 
 

2.4.4  Predicting lane departures from eyelid movements 
For our analyses we used signals that passed our signal quality control (section 2.3.4.1). 

The AntiSleep software provided the parameters: average eyelid opening, blink frequency, 

peak closing velocity, and blink amplitude.To determine which parameter worked best, we 

correlated the parameters with the lane departures. For further analyses we chose the 

parameter with the highest correlation (Fig. 12). 

  
Fig. 12.  Correlation between average eyelid 
opening and number of lane departures during a 
driving session (r2 = 0.43). Data are averages 
across drivers (n=34). 

 
Fig. 13.  Probability distribution of STDLP as a 
function of average eyelid opening in dark driving 
conditions. E.g., when the eyelid opening is 14 mm 
the probability that STDLP is between 0 and 50 cm is 
high, whereas it is low if the eyelid opening is merely 
6 mm. 

 

To predict lane departures from eyelid 

movements we took a Bayesian approach. 

First, we chose the standard deviation of 

lane position (STDLP) as variable to 

predict and average eyelid opening as 

predictor. Next, we estimated a probability 

distribution for the predicted variable 

given a certain condition or state of the 

predictor, by sampling average eyelid 

opening and STDLP across the whole 

dataset. We analyzed the driving con-

ditions (night-time, daytime) separately. 

We split each driving session into 2.5 

minute bins (24 bins per session). For each 

bin, we computed a sample pair of average 

eyelid opening and STDLP. We sorted the 

samples by increasing average eyelid 

opening, and generated a surface by fitting 

a Rayleigh distribution to the STDLP and 

eyelid opening data. Finally we interpola-

ted between the distributions. Figure 13 

shows the derived state space. 
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3.  RESULTS AND DISCUSSION 
 

3.1  Objective sleepiness and simulator sickness 
Figure 14 shows how objective sleepiness evolved during the 36-hour experiment. The 

number of lapses on the objective PVT was consistently higher for drivers that drove in  
 

 
Fig. 14.  Objective sleepiness as a function of time 
awake (lower x-axis) and time of day (upper x-axis) 
for drivers in the night time condition (blue) and 
daytime condition (red), both before (open circles) 
and after (asterisks) drive. Mean  ± SEM. 

the night time condition (Table 3). The 

number of lapses increased during the 

experiment (Table 3) but not after a drive 

(Table 3). Taken together, these results show 

that the study protocol implemented in 

Työtehoseura’s facilities was scientifically 

sound. 

 

Figure 15 shows how the symptoms of 

nausea, oculomotor strain, disorientation, 

and total scores in the simulator sickness 

questionnaire evolved during the 36-hour 

experiment. The light condition did not 

affect how the drivers rated their symptoms 

or the total score (Table 3). However, all 

symptoms and the total score increased 

during the experiment (Table 3). The 

(group- level) disorientation and total scores 

increased after the drives (Table 3). 
 

Post hoc analysis of the first six driving 

sessions showed that the (group-level) dis- 

orientation scores had increased after the second (F1,63=3.09, p=0.08) and third 

(F1,63=4.54, p=0.04) sessions. To identify which drivers contributed to this increase, we 

plotted the total scores of each driver as a function of driving session as well as the pre- 

post measurements. Ten (n=10) drivers exhibited increased total scores after the first 

driving session, n=12 drivers after the second session, and n=10 drivers after the third 

session.  
 

Table 3.  Effect of light condition, sleep loss, and time on task on markers of sleepiness and simulator 
sickness. Light condition: night versus day; Driving session: from 1 to 12; Pre- post: scores before and after 
driving. 

Measurement Light condition Driving session Pre- post 

PVT F1,734=25.1 (p<0.001) F11,734=36.3 (p<0.001) F1,734=2.31 (p<0.001) 

Nausea F1,734=0.55 (p=0.46) F11,734=51.1 (p<0.001) F1,734=2.64 (p=0.11) 

Oculomotor F1,734=0.26 (p=0.61) F11,734=98.4 (p<0.001) F1,734=2.77 (p=0.10) 

Disorientation F1,734=0.11 (p=0.74) F11,734=36.4 (p<0.001) F1,734=4.72 (p=0.03) 

Total Score F1,734=0.06 (p=0.82) F11,734=59.3 (p<0.001) F1,734=5.18 (p=0.02) 

 
 

 

 

 

r(KSS,lapses) = 0.23, p < 0.001, n = 782
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Fig. 15.  Symptoms of nausea (in a), oculomotor strain (in b), disorientation (in c), and total score in the 
simulator sickness questionnaire. Axes and legends as in fig. 14. Mean ± SEM. 

 

3.2  Predicting simulator sickness from HRV (Aim 1) 
Figure 16 shows the HRV parameters HF power and LF/HF ratio in the drivers whose SSQ 

total scores had increased after the 1st, 2nd, or 3rd driving session (“Increase in SSQ”) and 

in the rest of the drivers (“control”). Before the driving sessions, the LF/HF ratio was lower 

in the “Increase in SSQ” group than in the “Control” group. However, the pre- drive 

difference between the groups did not reach statistical significance. 
 

The lack of predictive power (pre- drive data in Fig. 16) and lack of correlation between 

the HRV parameters and our gold standard (not shown) probably stems from the fact that 

overall, the participants in our study did pretty well. The four drivers that aborted the sleep 

deprivation experiment did not give simulator sickness as the reason for quitting. In fact, 

none of the n=34 participants reported feeling simulator sick at any point, not even during 

the training session on Monday, which was unexpected.  
 

One explanation could be that none of the participants were prone to simulator sickness. 

The fact that they were students at Työtehoseura’s branch of vehicles and logistics means 

Effect of Light Conditions and Driving
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that they had driven in the simulators before. Perhaps they would not have volunteered for 

the study in the first place if they had been aware of a tendency towards simulator sickness. 

Another explanation could be that the highway scenarios they drove in did not promote 

simulator sickness. Driving in a night-time scenario does not challenge the driver’s sensory 

systems with as much conflicting information as driving in a daytime scenario does. 

Nevertheless, adding light to the highway scenario did not induce simulator sickness in the 

participants (Fig. 15 and Table 3). 
 

Overall, the SSQ total score was low during the first three sessions when the drivers still 

felt rested (Fig. 15). Nevertheless, the pre-drive LF/HF ratio was lower in the “Increase in 

SSQ” group than in the “Control” group. This difference (although not statistically 

significant) is important – since the parameter reacted to a modest increase in simulator 

sickness it may mean that a person with more pronounced tendency to simulator sickness 

the parameter could actually be a sensitive predictor for onset of simulator sickness 

symptoms. This should be examined with volunteers who are prone to simulator sickness. 

If found that the LF/HF ratio does predict an increase in SSQ scores with participants who 

clearly express simulator sickness, it should be straightforward to implement the method 

in practice. The skin electrodes we used may not be necessary, a heart rate belt may suffice. 

Moreover, the eMotion Faros 180° could transmit data in online mode directly to a 

computer with analysis software. This would allow the instructor to catch students whose 

pre-drive LF/HF ratio is lower than a predefined threshold. 
 

    
Fig. 16.  HF power (left) and LF/HF ratio (right) in control drivers and drivers with increased SSQ after the 
driving sessions. Data are averages across test sessions 1 to 3. PVT1 indicates pre- drive data. Mean ± SEM.  
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3.3  Deriving lane position from steering (Aim 2) 
A transfer function with model order m=8 rendered the highest correlation between the 

derived and measured lane position signals. For simulator #1, the transfer function (eq. 2) 

was:  

 𝑇𝐹8 =
−1.006+2.497𝑠−16.53𝑠2+14.6𝑠3−57.96𝑠4+13.57𝑠5−51.74𝑠6

0.0142+7.808𝑠+29.42𝑠2+326.4𝑠3+388.2𝑠4+2188𝑠5+630.3𝑠6+2853𝑠7+1𝑠8
,     (17) 

 

and for simulator #2, it was: 
 

𝑇𝐹8 =
3.953−22.11𝑠+46.31𝑠2−117.1𝑠3+41.83𝑠4−94.14𝑠5+21.2𝑠6

0.0401+21.13𝑠+173.1𝑠2+3961𝑠3+4574𝑠4+22500𝑠5+10790𝑠6+19500𝑠7+1𝑠8
.  (18) 

 

 
Fig. 17.  Simulator transfer function between 
steering wheel angle and lateral lane position for 
simulator #1. 

 
Fig. 18.  Simulator transfer function between 
steering wheel angle and lateral lane position for 
simulator #2 

 

Both simulators worked as amplifying low 

pass filters with the cut-off frequencies 0.31 

mHz (simulator #1) and 0.36 mHz (simulator 

#2)(Fig. 17-18). Figure 19 illustrates the 

correlations between measured and derived 

lane position signals. In the validation set, 

the average Pearson correlation between 

actual and derived lane position signals was 

r=0.21 (n=17, simulator #1) and r=0.27 

(n=18, simulator #2). In the test set, the 

average Pearson correlation between actual 

and derived lane position signals was r=0.43 

(simulator #1) and r=0.48 (simulator #2) 

(Fig. 20-21).  
 

Visual inspection of the actual and derived 

lane position signals showed that the 

correlation between them was high in the 

beginning of the straightaways but decreased 

after the first 30 seconds (Fig. 19). At 80 

km/h, the car covers 670 m in 30 seconds. 
 

Taken together this shows that one can derive 

the lane position signal from the steering 

wheel signal with the simulator’s transfer 

function, which con firms our previous 

finding [9]. However, the transfer function 

was developed for a linear system and 

therefore it works well only when applied to 

signals shorter than 30 seconds. Next, we 

should develop the method for a non-linear 

system. 

 

 
Fig. 19.  Actual lane position (black), steering wheel 
signal (red), and derived lane position (dashed blue) 
for one 0.7-km straightaway during the 1st driving 
session in the night condition (simulator #2). The 
correlation between actual and derived lane position 
was r=0.57. 



 

16 

 
Fig. 20.  Average correlation coefficients between 
the actual and derived lane position of the test set 
as a function of time awake (simulator #1) for 
drivers in daylight (red) and nighttime (blue) 
conditions. The correlation across all data points is 
r=0.43. Mean ± SEM.  

 
Fig. 21.  Average correlation coefficients between 
the actual and derived lane position of the entire 
test set as a function of time awake (simulator #2) 
for drivers in daylight (red) and nighttime (blue) 
conditions. The correlation across all data points is 
r=0.48. Mean ± SEM.  

 

3.4  Detecting lane departure from steering (Aim 2) 
Figure 22 illustrates the performance of the lane departure detection algorithm. It detected 

lane departures from the derived lane position signal before they occurred in the measured 
 

 
Fig 22.  Lane departure warnings. Red lines indicate 
actual lane departures. Black lines indicate issued 
warnings. In the middle of the straightaway there 
was a false warning. Y-axis is divided into ‘safe zone’ 
(-0.5<x<0.5 m, green) and ‘danger zone’ (x>0.5 m, 
red).  
 

Table 4.  Sensitivity and specificity of LDW 
algorithms with different time windows allowed 
outside the lane before a warning is issued.  

Time window 

(s) 

Sensitivity 

(%) 

Specificity 

(%) 

1  0.4706 0.7077 

2  0.4665 0.7063 

3  0.4615 0.7085 

4  0.4636 0.7110 

5  0.4611 0.7152 
 

signal, but also failed to issue warnings, 

and also gave false warnings.Table 4 

shows the sensitivity and specificity of the 

algorithm as a function of the time it allows 

the vehicle to drive outside the lane before 

it issues a warning. Issuing a warning after 

1 s results in slightly higher sensitivity than 

using a longer time windows. The rationale 

is that many of the lane departures were 

shorter and would not be detected with a 

longer window. 
 

Our success criterion was to derive lane 

position signals that correlated with the 

measured lane position signal with r≥0.78 

[9]. While the achieved correlation was 

lower than that, the other success criterion 

was met. The sensitivity 47% was higher 

than that of current video-based LDW 

systems, 40% [8].  
 

Taken together this means that one can 

detect lane departures from the steering 

wheel signal. While the transfer function is 

vehicle-specific, this function can be 

determined during a test drive. Next, we 

should test whether the proposed LDW 

system is field-capable. 
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3.5  Predicting lane departures from steering (Aim 3) 
Our QNN comprised 1542 parameters that we optimized for the training set data. 
 

Ee applied the trained QNN on the test set, predicted the steering wheel signal one time 

step ahead, and computed the root-mean-square error between the QNN output and the 

actual steering wheel signal. The RMSE was fairly stable both across the drivers (Fig. 23) 

and across their time awake (Fig. 24). The QNN’s ability to predict the steering wheel 

signal did not depend on driver or his/her time awake. Hence, the parameters that we 

determined in the training set should work well on new drives. On average, across all 

drivers, the error was RMSE=0.007±0.004 (mean ± SD). This corresponds to 0.7% (the 

steering wheel signal was scaled to the range [0,1]). Often the desirable error level during 

training is at most 1%, so our QNN performed in line with this Then again, on straighta-

ways the steering wheel usually varied between [-0.01,0.01]. 
 

Visual inspection of the actual and predicted steering wheel signals revealed that the main 

contributor to the prediction error was an offset between the baseline levels of the signals 

(Fig. 25). For example, in Fig. 25, the offset1 was 0.005, which means that most of the 

error stems from this offset. In some signals, atypical events, which the QNN couldn’t 

handle, were present (Fig. 26). However, after the atypical events the QNN resumed 

predicting with previous performance. 
 

Our hypothesis was that we could use QNNs to predict lane departures from steering. 

However, this did not work, because the QNN perceived the lane position signal as a 

constant bias – the variations in the lane position signal were much slower than the 

variations in the steering wheel signal. Scaling the lane position signal to a suitable range 

for the QNN would have precluded the QNN from predicting large lane departure (as the 

output would have been restricted to some range). Therefore, our second approach was to 

use the predicted steering wheel signals as inputs to the transfer function based approach 

to derive lane position (section 2.4.3.1). Figure 27 shows an example.  
 

Taken together we showed that QNNs can predict the steering wheel signal one time step 

ahead (in our case equaling 0.1 sec). Combined with lane departure detection it contributes 

towards prediction of lane departures. To our knowledge, other researchers have used 

QNNs to predict one time step ahead [15, 25-27]. For the purpose of traffic safety our next 

step will be to train the QNN to predict several time steps ahead. One approach could be 

to use the predicted datapoints as inputs in the QNN input layer. Figure 28 shows an 

example with our currently trained QNN: after 20 time steps the predicted signal starts to 

diverge2. Another approach, which is computationally heavy, could be to train the network 

to predict several time steps ahead. 

 
 

                                                           

1 The offset stems from different drivers making different steering movements and from the two different 
simulators in the study – the combined effect on the network manifests as an offset. It could be thought of 
as some average in zero level between all the drivers in the training set. 
2 How fast the predicted signal starts diverging depends on how sudden the changes in the topical signal 
portion are – the closer the starting point is to a transient, the faster the predicted signal will diverge. 
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Fig. 23.  QNN performance when predicting 1 time 
step ahead. RMSE as a function of driver ID. RMSE 
has steering wheel signal units. There was no 
difference between simulator #1 and simulator #2 
or between the night (ID 1-16) and day conditions 
(ID 17-34). 

 
Fig. 24.  QNN performance when predicting 1 time 
step ahead. RMSE for each driver as a function of 
time awake. Each circle is one driver at a specific 
time awake. RMSE is in the units of the steering 
wheel signal. 

 
Fig. 25.  Actual (blue) and predicted (red) steering 
wheel signal (when predicting 1 time step ahead): 
with no atypical events in the actual steering 
wheel signal the RMSE between actual and 
predicted signal is small (in this example RMSE is 
0.005 This signal was recorded at 18 h time awake. 

 

 
Fig. 27.  Measured lane position signal (green) and 
derived lane position signal The correlation was 
r=0.73.  

 

 
Fig. 26.  Actual (blue) and predicted (red) steering 
wheel signal (when predicting 1 time step ahead): 
the QNN predicts poorly during the atypical event 
(20 - 50 s) but recovers after the event with the 
same performance as before it (in this example 
RMSE is 0.042). This signal was recorded at 30 h 
time awake. 

 
Fig. 28.  Predicted values, corrected for the offset, 
was fed to the QNN as inputs. The predicted values 
starts diverging after approximately 20 time steps 
(2 s). Time awake was 3 h. 
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4  CONCLUSIONS 
We provided the first results that a lower ratio between the low- and high frequency 

components in the heart rate variability precedes a small increase in the scores on the 

Simulator Sickness Questionnaire. This finding was based on a group of people with no 

pronounced simulator sickness, so before any firm conclusions can be drawn, we need to 

replicate the results with volunteers who clearly express simulator sickness. 
 

We developed an algorithm that detects lane departures from the steering wheel signal with 

higher sensitivity than the current video-based systems do. Our next task is to increase the 

sensitivity even more. Because the method was developed from data recorded in a 

laboratory-environment we also need to test whether it works in the field. If it does, we 

have provided road transportation with the first lane departure warning (LDW) system that 

is based on a robust in-car signal. 
 

Finally, we showed that Quantum Neural Networks can predict the steering wheel angle 

0.1 s ahead with 0.35% error (i.e., high accuracy) and that the predicted signal can be used 

to derive the lane position signal. If we can increase the predicttion horizon we have the 

necessary elements for a predictive in-car LDW system. 
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